Electrochemical Determination of Propranolol, Acetaminophen and Folic Acid in Urine, and Human Plasma Using Cu2O–CuO/rGO/CPE

 Farzad Hosseini Farzad Hosseini , Manochehr Bahmaei Manochehr Bahmaei , Mehran Davallo Mehran Davallo
Российский электрохимический журнал
Abstract / Full Text

A Cu2O–CuO/rGO/CPE was used for simultaneous measurement of propranolol (PRO), Acetaminophen (AC) and folic acid (FA) using differential pulse voltammetry (DPV) and amperometric techniques. Modification on the surface of carbon paste electrode was carried out using Cu2O–CuO/Gr nanocomposite and performance of the modified electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The Cu2O–CuO/rGO/CPE represents acceptable peak separation between the analytes, and exhibited three sharp and well-defined peaks for AC, FA and PRO at 392, 719 and 983 mV in Britton–Robinson universal buffer solution pH 7.0. DPV illustrated a dynamic range of 0.01–92.5, 0.013–98.3, and 0.04–104.6 μM with the detection limit of 0.004, 0.006, and 0.011 μM for of AC, FA and PRO, respectively. Amperometric technique was used for determination of the analytes in the range of 0.008–13, 0.01–14, and 0.02–15 μM for AC, FA and PRO, respectively, with the detection limit of AC: 0.003, FA: 0.004 and PRO: 0.008 μM. Also, Cu2O–CuO/rGO/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for determination of target analytes. The proposed sensor was successfully used for the simultaneous determination of AC, FA and PRO in urine and human plasma spiked samples with the satisfactory results.

Author information
  • Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran

    Farzad Hosseini, Manochehr Bahmaei & Mehran Davallo

  1. Léauté-Labrèze, C., De La Roque, E.D., Hubiche, T., Boralevi, F., Thambo, J.-B., and Taïeb, A., Propranolol for severe hemangiomas of infancy, N. Engl. J. Med., 2008, vol. 358, p. 2649.
  2. Shand, D.G., Propranolol, N. Engl. J. Med., 1975, vol. 293, p. 280.
  3. El-Saharty, Y., Simultaneous high-performance liquid chromatographic assay of furosemide and propranolol HCl and its application in a pharmacokinetic study, J. Pharm. Biomed. Anal., 2003, vol. 33, p. 699.
  4. Imam, S.S., Ahad, A., Aqil, M., Sultana, Y., and Ali, A., A validated RP-HPLC method for simultaneous determination of propranolol and valsartan in bulk drug and gel formulation, J. Pharm. BioAllied Sci., 2013, vol. 5, p. 61.
  5. Su, C., Li, Zh., Zhang, D., Wang, Zh., Zhou, X., Liao, L., and Xiao, X., A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen, Biosens. Bioelectron., 2020, vol. 148, p. 111819.
  6. Roberts, I.D., Krajbich, I., and Way, B.M., Acetaminophen influences social and economic trust, Sci. Rep., 2019, vol. 9, p. 4060.
  7. Chekin, F., Mishyn, V., Barras, A., Lyskawa, J., Ye, R., Melinte, S., Woisel, P., Boukherroub, R., and Szunerits, S., Dopamine-functionalized cyclodextrins: modification of reduced graphene oxide based electrodes and sensing of folic acid in human serum, Anal. Bioanal. Chem., 2019, vol. 411, p. 5149.
  8. Meng, L., Yin, J.-H., Yuan, Y., and Xu, N., 11-mercaptoundecanoic acid capped gold nanoclusters as a fluorescent probe for specific detection of folic acid via a ratiometric fluorescence strategy, RSC Adv., 2018, vol. 8, p. 9327.
  9. Lavanya, N., Fazio, E., Neri, F., Bonavita, A., Leonardi, S., Neri, G., and Sekar, C., Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn–SnO2 nanoparticles modified glassy carbon electrode, J. Electroanal. Chem., 2016, vol. 770, p. 23.
  10. Gao, X., Yue, H., Huang, S., Lin, X., Gao, X.P., Wang, B., Yao, L., Wang, W., and Guo, E., Synthesis of graphene/ZnO nanowire arrays/graphene foam and its application for determination of folic acid, J. Electroanal. Chem., 2018, vol. 808, p. 189.
  11. Breithaupt, D.E., Determination of folic acid by ion-pair RP–HPLC in vitamin-fortified fruit juices after solid-phase extraction, Food Chem., 2001, vol. 74, p. 521.
  12. Ren, W., Fang, Y., and Wang, E., A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids, ACS Nano, 2011, vol. 5, p. 6425.
  13. Szostak, R. and Mazurek, S., Quantitative determination of acetylsalicylic acid and acetaminophen in tablets by FT-Raman spectroscopy, Analyst, 2002, vol. 127, p. 144.
  14. Wang, S.-F., Xie, F., and Hu, R.-F., Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen, Sens. Actuators, B: Chem., 2007, vol. 123, p. 495.
  15. Filik, H., Avan, A.A., and Yetimoğlu, E.K., Multiwalled carbon nanotubes β-cyclodextrin modified electrode for electrochemical determination of bisphenol S in water samples, Russ. J. Electrochem., 2019, vol. 55, p. 70.
  16. Rezaei, M., An Au–Pd@MWCNT/graphene modified carbon paste electrode as a novel nano-composite sensor for the trace determination of nitrite, Anal. Bioanal. Electrochem., 2016, vol. 8, p. 287.
  17. Izadkhah, V., Rezaei, M., and Mahmoodi, J., A new platform based on the Fe3O4 nanoparticles, ligand and ionic liquid: application to the sensitive electrochemical determination of the lead ion in water and fish samples, Anal. Bioanal. Chem. Res., 2019, vol. 6, p. 405.
  18. Yang, F., Liu, P., Hao, T., Wu, Y., Ma, Sh., Hu, Y., Wang, S., and Guo, Z., Fast-scan anodic stripping voltammetry for detection of Pb(II) at picomolar level, Russ. J. Electrochem., 2019, vol. 55, p. 222.
  19. Đurđić, S., Stanković, V., Perić, M., Ognjanović, M., Švorc, Ľ., Mutić, J., and Stanković, D.M., Electrochemistry of the arrow poison, tubocurarine, using boron doped diamond electrode: Experimental and theoretical approaches, J. Electrochem. Soc., 2019, vol. 166, p. G157.
  20. Veseli, A., Mullallari, F., Balidemaj, F., Berisha, L., Švorc, Ľ., and Arbneshi, T., Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes, Microchem. J., 2019, vol. 148, p. 412.
  21. Sarakhman, O., Dubenska, L., and Švorc, Ľ., First voltammetric behavior study of non-narcotic analgesic drug nefopam and its reliable determination on boron-doped diamond electrodes, J. Electroanal. Chem., 2020, vol. 858, p. 113759.
  22. Yang, F., Liu, P., Hao, T., Wu, Y., Ma, Sh., Hu, Y., Wang, S., and Guo, Z., Fast-scan anodic stripping voltammetry for detection of Pb(II) at picomolar level, Russ. J. Electrochem., 2019, vol. 55, p. 222.
  23. Yi, H. and Li, Ch., Voltammetric determination of ciprofloxacin based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) at carbon paste electrode, Russ. J. Electrochem., 2007, vol. 43, p. 1377.
  24. Veseli, A., Vasjari, M., Arbneshi, T., Hajrizi, A., Švorc, Ľ., Samphao, A., and Kalcher, K., Electrochemical determination of histamine in fish sauce using heterogeneous carbon electrodes modified with rhenium(IV) oxide, Sens. Actuators, B, 2016, vol. 228, p. 774.
  25. Xu, M., Ma, M., and Ma, Y., Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode, Russ. J. Electrochem., 2012, vol. 48, p. 489.
  26. Ma, W. and Sun, D.M., The electrochemical properties of dopamine, epinephrine and their simultaneous determination at a poly(L-methionine) modified electrode, Russ. J. Electrochem., 2007, vol. 43, p. 1382.
  27. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., Jahani, Sh., Khabazzadeh, H., and Alizadeh, R., Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor, Russ. J. Electrochem., 2017, vol. 53, p. 452.
  28. Song, J., Yang, J., and Yang, X., Electrochemical determination of 5-hydroxytryptamine using mesoporous SiO2 modified carbon paste electrode, Russ. J. Electrochem., 2009, vol. 45, p. 1346.
  29. Svítková, J., Ignat, T., Švorc, Ľ., Labuda, J., and Barek, J., Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing, Crit. Rev. Anal. Chem., 2016, vol. 46, p. 248.
  30. Zang, Z, Nakamura, A., and Temmyo, J., Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application, Opt. Express, 2013, vol. 21, p. 11448.
  31. Zang, Z., Nakamura, A., and Temmyo, J., Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature, Mater. Lett., 2013, vol. 92, p. 188.
  32. Ke, F.-S., Huang, L., Wei, G.-Z., Xue, L.-J., Li, J.-T., Zhang, B., Chen, S.-R., Fan, X.-Y., and Sun, S.-G., One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance, Electrochim. Acta, 2009, vol. 54, p. 5825.
  33. Zhao, Q., Deng, X., Ding, M., Huang, J., Ju, D., and Xu, X., Synthesis of hollow cubic Zn2SnO4 sub-microstructures with enhanced photocatalytic performance, J. Alloys Compd., 2016, vol. 671, p. 328.
  34. Zhao, Q., Ju, D., Song, X., Deng, X., Ding, M., Xu, X., and Zeng, H., Polyhedral Zn2SnO4: synthesis, enhanced gas sensing and photocatalytic performance, Sens. Actuators, B: Chem., 2016, vol. 229, p. 627.
  35. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Graphene-based composite materials, Nature, 2006, vol. 442, p. 282.
  36. Neto, A.C., Guinea, F., Peres, N.M., Novoselov, K.S., and Geim, A.K., The electronic properties of graphene, Rev. Mod. Phys., 2009, vol. 81, p. 109.
  37. Nathan, D.M.G.T. and Boby, S.J.M., Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors, J. Alloys Compd., 2017, vol. 700, p. 67.
  38. Basu, P., Mahesh, R., Harish, S., Joseph, S., and Sagayaraj, P., One-pot hydrothermal preparation of Cu2O–CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications, Appl. Surf. Sci., 2018, vol. 449, p. 474.
  39. Tian, J., Li, H., Xing, Z., Wang, L., Luo, Y., Asiri, A.M., Al-Youbi, A.O., and Sun, X., One-pot green hydrothermal synthesis of CuO–Cu2O–Cu nanorod-decorated reduced graphene oxide composites and their application in photocurrent generation, Catal. Sci. Technol., 2012, vol. 2, p. 2227.
  40. Janene, F., Dhaouadi, H., Arfaoui, L., Etteyeb, N., and Touati, F., Nanoplate-like CuO: hydrothermal synthesis, characterization, and electrochemical properties, Ionics, 2016, vol. 22, p. 1395.
  41. Nethravathi, C. and Rajamathi, M., Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 2008, vol. 46, p. 1994.
  42. Zhang, Y.X., Huang, M., Kuang, M., Liu, C.P., Tan, J.L., Dong, M., Yuan, Y., Zhao, X.L., and Wen, Z., Facile synthesis of mesoporous CuO nanoribbons for electrochemical capacitors applications, Int. J. Electrochem. Sci., 2013, vol. 8, p. 1366.
  43. Mosazadeh, F., Mohammadi, S.Z., and Sarhadi, A.H., Electrochemical determination of acetaminophen by using modified screen printed carbon electrode, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1163.
  44. Kanchana, P. and Sekar, C., Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles, Spectrochim. Acta, A, 2015, vol. 137, p. 58.
  45. Alizadeh, T. and Allahyari, L., Highly-selective determination of carcinogenic derivative of propranolol by using a carbon paste electrode incorporated with nano-sized propranolol-imprinted polymer, Electrochim. Acta, 2013, vol. 111, p. 663.
  46. Švorc, Ľ., Sochr, J., Tomčík, P., Rievaj, M., and Bustin, D., Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode, Electrochim. Acta, 2012, vol. 68, p. 227.
  47. Cinková, K., Švorc, Ľ., Šatkovská, P., Vojs, M., Michniak, P., and Marton, M., Simple and rapid quantification of folic acid in pharmaceutical tablets using a cathodically pretreated highly boron-doped polycrystalline diamond electrode, Anal. Lett., 2016, vol. 49, p. 107.
  48. Kaur, B. and Srivastava, R., Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline-zeolite organic-inorganic hybrid materials, Sens. Actuators, B: Chem., 2015, vol. 211, p. 476.
  49. Chi, Y. and Li, J., Determination of levofloxacin hydrochloride with multiwalled carbon nanotubes-polymeric alizarin film modified electrode, Russ. J. Electrochem., 2010, vol. 46, p. 155.
  50. Ruiyi, L., Haiyan, Z., Zaijun, L., and Junkang, L., Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots, Microchim. Acta, 2018, vol. 185, p. 145.
  51. Liu, B., Ouyang, X., Ding, Y., Luo, L., Xu, D., and Ning, Y., Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan, Talanta, 2016, vol. 146, p. 114.
  52. Rosado, T., Henriques, I., Gallardo, E., and Duarte, A.P., Determination of melatonin levels in different cherry cultivars by high-performance liquid chromatography coupled to electrochemical detection, Eur. Food Res. Technol., 2017, vol. 243, p. 1749.
  53. Kim, D., Kim, J. M., Jeon, Y., Lee, J., Oh, J., Antink, W.H., Kim. D., and Piao, Y., Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen, Sens. Actuators, B: Chem., 2018, vol. 259, p. 50.
  54. Ruiyi, L., Haiyan, Z., Zaijun, L., and Junkang, L., Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots, Microchim. Acta, 2018, vol. 185, p. 145.
  55. Yu, S., Li, H., Li, G., Niu, L., Liu, W., and Di, X., Reduced graphene oxide-supported gold dendrite for electrochemical sensing of acetaminophen, Talanta, 2018, vol. 184, p. 244.
  56. Cheraghi, S., Taher, M.A., and Karimi-Maleh, H., Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples, J. Food Compos. Anal., 2017, vol. 62, p. 254.
  57. Kun, Z., Shuai, Y., Dongmei, T., and Yuyang, Z., Electrochemical behavior of propranolol hydrochloride in neutral solution on calixarene/multi-walled carbon nanotubes modified glassy carbon electrode, J. Electroanal. Chem., 2013, vol. 709, p. 99.
  58. Hui-Xiang, L.I., Xiao-Li, X.U., Hui, C.H.E.N., Zhang, S, and Ji-Lie, K.O.N.G., Fabrication of molecularly imprinted electrochemical sensor for selective detection of propranolol hydrochloride, Chin. J. Anal. Chem., 2012, vol. 40, p. 817.
  59. Sartori, E.R., Medeiros, R.A., Rocha-Filho, R.C., and Fatibello-Filho, O., Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode, Talanta, 2010, vol. 81, p. 1418.
  60. Karimi-Maleh, H., Hatami, M., Moradi, R., Khalilzadeh, M.A., Amiri, S., and Sadeghifar, H., Synergic effect of Pt–Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid, Microchim. Acta, 2016, vol. 183, p. 2957.
  61. Mazloum-Ardakani, M., Beitollahi, H., Amini, M.K., Mirkhalaf, F., and Abdollahi-Alibeik, M., Simultaneous and selective voltammetric determination of epinephrine, acetaminophen and folic acid at a ZrO2 nanoparticles modified carbon paste electrode, Anal. Methods, 2011, vol. 3, p. 673.
  62. Mazloum-Ardakani, M., Sabaghian, F., Khoshroo, A., Abolhasani, M., and Naeimi, H., Electrochemical determination of captopril in the presence of acetaminophen, tryptophan, folic acid, and l-cysteine at the surface of modified carbon nanotube paste electrode, Ionics, 2015, vol. 21, p. 239.
  63. Wong, A., Santos, A.M., Silva, T.A., and Fatibello-Filho, O., Simultaneous determination of isoproterenol, acetaminophen, folic acid, propranolol and caffeine using a sensor platform based on carbon black, graphene oxide, copper nanoparticles and PEDOT: PSS, Talanta, 2018, vol. 183, p. 329.