Examples



mdbootstrap.com



 
Статья
2021

Effect of the Temperature of Preliminary Treatment on the Structural Characteristics of Highly Porous Iron-Containing Metal–Carbon Nanocomposites during Their Production


M. N. EfimovM. N. Efimov, A. A. VasilevA. A. Vasilev, D. G. MuratovD. G. Muratov, N. A. ZhilyaevaN. A. Zhilyaeva, E. L. DzidziguriE. L. Dzidziguri, G. P. KarpachevaG. P. Karpacheva
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421010064
Abstract / Full Text

An approach to the synthesis of metal-carbon nanocomposites, comprising iron-containing nanoparticles distributed in a highly porous carbon support based on pyrolyzed polyacrylonitrile, has been developed. It is shown that metal nanoparticles form in situ during pyrolysis of the polymer and the formation of a porous carbon matrix. Features of the formation of iron-containing particles are investigated, depending on the temperature of preliminary treatment (200, 500, and 800°C) and on the final temperature of synthesis, which varied from 500 to 900°C. The change in the specific surface area of the carbon support is shown, depending on the conditions of preparation. The formation of phases α-Fe, γ-Fe, and KFeO2 is observed in addition to that of iron carbide nanoparticles.

Author information
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, RussiaM. N. Efimov, A. A. Vasilev, D. G. Muratov, N. A. Zhilyaeva & G. P. Karpacheva
  • National University of Science and Techology (MISiS), 119049, Moscow, RussiaE. L. Dzidziguri
References
  1. J. Lee, J. Kim, and T. Hyeon, Adv. Mater. 18, 2073 (2006).
  2. L. Borchardt, Q.-L. Zhu, M. E. Casco, et al., Mater. Today 20, 592 (2017).
  3. Z. Bi, Q. Kong, Y. Cao, et al., J. Mater. Chem. A 7, 16028 (2019).
  4. L. Wang and X. Hu, Chem. Asian J. 13, 1518 (2018).
  5. F. Marrakchi, M. Auta, W. A. Khanday, et al., Powder Technol. 321, 428 (2017).
  6. J. Fujiki and K. Yogo, Chem. Commun. 52, 186 (2016).
  7. J. Wang and S. Kaskel, J. Mater. Chem. 22, 23710 (2012).
  8. Y. Yang, K. Chiang, and N. Burke, Catal. Today 178, 197 (2011).
  9. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, and V. M. Novotortsev, Russ. Chem. Rev. 83, 718 (2014).
  10. A. Wu, X. Yang, and H. Yang, J. Alloys Compd. 513, 193 (2012).
  11. A. A. El-Gendy, E. M. M. Ibrahim, V. O. Khavrus, et al., Carbon 47, 2821 (2009).
  12. M. J. Livani, M. Ghorbani, and H. Mehdipour, New Carbon Mater. 33, 578 (2018).
  13. Q. Wang, Y. Liu, Q. Meng, et al., Microporous Mesoporous Mater. 290, 109672 (2019).
  14. M. H. Fatehi, J. Shayegan, M. Zabihi, et al., J. Environ. Chem. Eng. 5, 1754 (2017).
  15. Q. He, J. Dai, L. Zhu, et al., J. Alloys Compd. 687, 326 (2016).
  16. D. G. Muratov, A. A. Vasil’ev, M. N. Efimov, et al., Fiz. Khim. Obrab. Mater., No. 6, 26 (2018).
  17. M. N. Efimov, A. A. Vasilev, D. G. Muratov, L. M. Zemtsov, and G. P. Karpacheva, Russ. J. Phys. Chem. A 91, 1766 (2017).
  18. M. N. Efimov, E. Y. Mironova, A. A. Vasilev, et al., Catal. Commun. 128, 105717 (2019).
  19. A. A. Yushkin, M. N. Efimov, A. A. Vasil’ev, V. I. Ivanov, Yu. G. Bogdanova, V. D. Dolzhikova, G. P. Karpacheva, G. N. Bondarenko, and A. V. Volkov, Polymer Sci., Ser. A 59, 880 (2017).
  20. M. N. Efimov, A. A. Vasilev, D. G. Muratov, et al., J. Environ. Chem. Eng. 7, 103514 (2019).
  21. V. N. Selivanov and E. F. Smyslov, Crystallogr. Rep. 38, 382 (1993).
  22. H. Marsh, D. Crawford, and D. W. Taylor, Carbon 21, 81 (1983).
  23. A. A. Vasilev, M. N. Efimov, G. N. Bondarenko, et al., Chem. Phys. Lett. 730, 8 (2019).