Examples



mdbootstrap.com



 
Статья
2020

Photocatalytic Decomposition of 2,4-Dichlorophenol Using Platelike SnO2/ZnO Composites Prepared by a Facile Route


 Juan Xie Juan Xie, Zhiyong LiuZhiyong Liu, MeiXia LiMeiXia Li, Yongquan XuYongquan Xu, Hongxia DuHongxia Du
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420010124
Abstract / Full Text

Well dispersed SnO2/ZnO composites with platelike shape were synthesized via a facile method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–Vis diffuse reflectance spectra (UV–Vis DRS) were used to characterize the products. Photocatalytic activity of the as-prepared SnO2/ZnO composites was evaluated by degradation of persistent organic pollutant 2,4-dichlorophenol (2,4-DCP) in aqueous solution. Compared with pure ZnO, SnO2/ZnO composites show higher photocatalytic activity under simulated solar light irradiation. 2,4-DCP is almost completely degraded by SnO2/ZnO composite with molar ratio 1 : 3 within 3.5 h. Moreover, the SnO2/ZnO composites also show excellent circulation stability. The high performance of SnO2/ZnO is mainly attributed to the synergistic effect between SnO2 and ZnO.

Author information
  • College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, 050018, Shijiazhuang, China Juan Xie, Yongquan Xu & Hongxia Du
  • Shijiazhuang Institute of Technology, 050228, Shijiazhuang, ChinaZhiyong Liu
  • College of Materials Science and Engineering, Hebei University of Engineering, 056038, Handan, ChinaMeiXia Li
References
  1. J. B. Jia, S. P. Zhang, P. Wang, and H. J. Wang, J. Hazard. Mater. 205–206, 150 (2012).
  2. S. Chaliha and K. G. Bhattacharyya, Chem. Eng. J. 139, 575 (2008).
  3. G. S. Pozan and A. Kambur, Chemosphere 105, 152 (2014).
  4. L. Yu, X. F. Yang, Y. S. Ye, X. J. Peng, and D. S. Wang, J. Colloid Interface Sci. 453, 100 (2015).
  5. B. Palanisamy, C. M. Babu, B. Sundaravel, S. Anandan, and V. Murugesan, J. Hazard. Mater. 252–253, 233 (2013).
  6. Y. J. Chiang and C. C. Lin, Powder Technol. 246, 137 (2013).
  7. M. M. Rashad, A. A. Ismail, I. Osama, I. A. Ibrahim, and A.-H. T. Kandil, Arabian J. Chem. 7, 71 (2014).
  8. L. R. Zheng, Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, and J. F. Zhu, Inorg. Chem. 48, 1819 (2009).
  9. A. Eslami, S. Nasseri, B. Yadollahi, A. Mesdaghinia, F. Vaezi, R. Nabizadeh, and S. Nazmara, J. Chem. Technol. Biotechnol 83, 1447 (2008).
  10. P. Prasannalakshmi and N. Shanmugam, Mater. Sci. Semicond. Process. 61, 114 (2017).
  11. J. Xie, L. Zhang, M. X. Li, Y. J. Hao, Y. W. Lian, Z. Li, and Y. Wei, Ceram. Int. 41, 9420 (2015).
  12. S. Harish, J. Archana, M. Sabarinathan, M. Navaneethan, K. D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, H. Ikeda, D. K. Aswal, and Y. Hayakawa, Appl. Surf. Sci. 418, 103 (2017).
  13. J. Xie, Z. Zhou, Y. W. Lian, Y. J. Hao, X. Y. Liu, M. X. Li, and Y. Wei, Ceram. Int. 40, 12519 (2014).
  14. A. Hamrouni, H. Lachheb, and A. Houas, Mater. Sci. Eng., B 178, 1371 (2013).
  15. V. Kuzhalosai, B. Subash, A. Senthilraja, P. Dhatshanamurthi, and M. Shanthi, Spectrochim. Acta, Part A 115, 876 (2013).
  16. J. H. Ko, I. H. Kim, D. Kim, K. S. Lee, T. S. Lee, B. Cheong, and W. M. Kim, Appl. Surf. Sci. 253, 7398 (2007).
  17. P. Pascariu, A. Airinei, N. Olaru, L. Olaru, and V. Nica, Ceram. Int. 42, 6775 (2016).
  18. M. Z. Xu, S. L. Jia, C. Chen, Z. Y. Zhang, J. F. Yan, Y. X. Guo, Y. N. Zhang, W. Zhao, J. N. Yun, and Y. N. Wang, Mater. Res. Bull. 106, 74 (2018).
  19. X. Huang, L. Shang, S. Chen, J. Xia, X. P. Qi, X. C. Wang, T. R. Zhang, and X. M. Meng, Nanoscale 5, 3828 (2013).
  20. H. H. Wang, S. Baek, J. Lee, and S. Lim, Chem. Eng. J. 146, 355 (2009).
  21. G. N. Panin, A. N. Baranov, Y.-J. Oh, and T. W. Kang, Curr. Appl. Phys. 4, 647 (2004).