Secondary Reduction of Refractory Metals near the Smooth Cathode during Molten Salt Electrolysis. 1. Derivation of Fundamental Equations for the Process Model

A. P. Khramov A. P. Khramov , A. A. Chernyshev A. A. Chernyshev , A. V. Isakov A. V. Isakov , Yu. P. Zaykov Yu. P. Zaykov
Российский электрохимический журнал
Abstract / Full Text

A model of the steady-state process of the refractory metal ion secondary reduction with an alkali or alkaline earth metal formed on a smooth cathode during the electrolysis of molten salt is presented. The secondary reduction is localized near the cathode. The model takes into account the molecular diffusion of the initial components and the thermodynamics of the secondary chemical reaction, the Fick’s first law, the Faraday law, and the Nernst equation. Expressions are obtained for the calculating of concentration profiles, the velocity profile of the secondary reduction reaction inside the diffusion layer, and the secondary reduction current distribution profile over the thickness of the diffusion layer.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 620137, Yekaterinburg, Russia

    A. P. Khramov, A. A. Chernyshev, A. V. Isakov & Yu. P. Zaykov

  • Ural Yeltsin Federal University, Institute of Chemical Technology, 620002, Yekaterinburg, Russia

    A. A. Chernyshev & Yu. P. Zaykov

  1. Huang, Y., Bai, S., Zhang, H., Ye, Y., and Zhu, L., Electrochemical studies of Ir coating deposition from NaCl–KCl–CsCl molten salts, Surface Coatings Technol., 2017, vol. 322, p. 76. https://doi.org/10.1016/j.surfcoat.2017.05.032
  2. Zhuk, S.I., Isakov, A.V., Apisarov, A.P., Grishenkova, O.V., Isaev, V.A., Vovkotrub, E.G., and Zaykov, Yu.P., Electrodeposition of continuous silicon coatings from the KF–KCl–K2SiF6 melts. J. Electrochem. Soc., 2017, vol. 164, no. 8, p. H5135. https://doi.org/10.1149/2.0171708jes
  3. Kuznetsov, S.A., Kuznetsova, S.V., Rebrov, E.V., Mies, M.J.M., de Croon, M.H.J.M., and Schouten, J.C., Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air–water mixture, Surface and Coatings Technology, 2005, vol. 195, p. 182. https://doi.org/10.1016/j.surfcoat.2004.05.021
  4. Kushhkov, H.B. and Adamokova, M.N., Electrodeposition of tungsten, molybdenum and double carbides of tungsten (molybdenum) and nickel (cobalt) from low-temperature halide-oxide melts, ECS Transactions, 2007, vol. 3, no. 35, p. 399. https://doi.org/10.1149/1.2798684
  5. Li, H., Song, Q., Xu, Q., Chen, Y., and Meng, J., Electrochemical synthesis of NbC-Sn composite powder in molten chloride, Trans. Nonferrous Met. Soc. China, 2017, vol. 27, no. 10, p. 2310. https://doi.org/10.1016/S1003-6326(17)60257-7
  6. Lei, X., Xu, B., Yang, G., Shi, T., Liu, D., and Yang, B., Direct calciothermic reduction of porous calcium titanate to porous titanium, Mater. Sci. & Engineering C, 2018, vol. 91, p. 125. https://doi.org/10.1016/J.MSEC.2018.05.027
  7. Lin, N., Han, Y., Zhou, J., Zhang, K., Xu, T., Zhu, Y., and Qian, Y., A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries, Energy Environ. Sci., 2015, vol. 8, no. 11, p. 3187. https://doi.org/10.1039/C5EE02487K
  8. Gostishchev, V.V., Physicochemical aspects of the fabrication of tungsten powder by the metallothermy of the scheelite concentrate in ionic melts, Russ. J. Non-Ferrous Metals, 2015, vol. 56, no. 4, p. 387. https://doi.org/10.3103/S1067821215040045
  9. Choi, E. and Lee, J., Complete reduction of high-density UO2 to metallic U in molten Li2O–LiCl, J. Nuclear Mater., 2017, vol. 494, p. 439. https://doi.org/10.1016/J.JNUCMAT.2017.07.036
  10. Smirnov, M.V., Chebykin, V.V., and Tsiovkina, L.A., The thermodynamic properties of sodium and potassium dissolved in their molten chlorides, bromides, and iodides, Electrochim. Acta, 1981, vol. 26, no. 9, p. 1275. https://doi.org/10.1016/0013-4686(81)85111-0
  11. Smirnov, M.V. and Ivenko, V.M., Saturation vapour pressure and thermodynamic properties of potassium solutions in molten binary mixtures of its halides, Electrochim. Acta, 1990, vol. 35, no. 2, p. 529. https://doi.org/10.1016/0013-4686(90)87040-9
  12. Baraboshkin, A.N., Smirnov, M.V., and Saltykova, N.A., Cathodic processes at current densities above the limiting diffusion. Trudy Inst. Elektrokhimii UFAN USSR (in Russian), 1961, no. 2, p. 41.
  13. Yuan, B. and Okabe, T.H., Niobium powder production by reducing electrochemically dissolved niobium ions in molten salt, J. Alloys Compounds, 2008, vol. 454, p. 185. https://doi.org/10.1016/J.JALLCOM.2006.12.121
  14. Yuan, B. and Okabe, T.H., Electrochemically assisted formation of fine niobium powder in molten salt, J. Electrochem. Soc., 2007, vol. 154, no. 1, p. E1. https://doi.org/10.1149/1.2364842
  15. Zaykov, Yu.P., Isakov, A.V., Apisarov, A.P., and Nikitina, A.O., Electrochemical synthesis of an iridium powder with a large specific surface area, Russ. Metallurgy (Metally), 2017, vol. 2017, no. 2, p. 106. https://doi.org/10.1134/S003602951702015X
  16. Chernyshev, A.A., Apisarov, A.P., and Zaykov, Yu.P., Secondary reduction of tantalum in NaCl–KCl and KCl–CaCl2 molten salts, Tsvetnye Metally (in Russian), 2017, no. 11, p. 43. https://doi.org/10.17580/tsm.2017.11.08
  17. Khramov, A.P., Chernyshev, A.A., Isakov, A.V., Suzdal’tsev, A.V., and Zaykov, Yu.P., Secondary reduction of a refractory metal near a smooth cathode during electrolysis of molten salt. 3. Numerical reproduction of a natural experiment with cathode reduction of Nb in the melt KNaCl2–NaF–K3NbF7, Russ. J. Electrochem. 2020, vol. 56.
  18. Khramov, A.P., Chernyshev, A.A., Isakov, A.V., and Zaykov, Yu.P., Secondary reduction of a refractory metal near a smooth cathode during electrolysis of molten salt. 2. Calculations for some hypothetical experiments, Russ. J. Electrochem. 2020, vol. 56, no. 9.
  19. Sychev, A.G., Nikulin, N.A., Zaykov, Yu.P., and Ivanovskiy, L.Ye., Study of cathodic processes in the melt of calcium chloride, Rasplavy (in Russian), 1992, no. 6, p. 32.
  20. Kovalevsky, R.A., Electrode processes on an indifferent electrode in dilute solutions of alkali and alkaline earth metals in their molten chlorides. Abstract of thesis for the degree of Candidate of Chemical Sciences (in Russian), Yekaterinburg: Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, 1992.
  21. Smirnov, M.V., Electrode Potentials in Molten Chlorides (in Russian), Moscow: Nauka, 1973.
  22. Ivenko, V.M., Chebykin, V.V., and Tsiovkina, L.A., The activity coefficients of potassium dissolved in molten mixtures of its halides, Rasplavy (in Russian), 2017, no. 6, p. 500.