Examples



mdbootstrap.com



 
Статья
2022

Controllable Synthesis and Mechanical Properties of Nano Titania-Based Functional Materials


Zan YanZan Yan
Российский журнал общей химии
https://doi.org/10.1134/S1070363222080217
Abstract / Full Text

The controllable synthesis and mechanical properties of nano titania-based functional materials have been studied for improving their mechanical properties. TiO2 hollow spheres have been directly synthesized in aqueous phase by electrostatic adsorption using polystyrene microspheres as a template. Morphology of the materials has been determined by transmission electron microscopy, scanning electron microscopy and electron diffraction. Mechanical properties of nano titania-based functional materials are analyzed by adding different content of Al into TiO2 hollow spheres. The results show that the process is simple and can be easily controlled. The aqueous synthesis route can effectively reduce involvement and emission of toxic and harmful substances. When Al content is 1, the fracture strength of nano titania-based functional materials can be improved, the deformation of materials can be reduced, and the mechanical properties of functional materials can be improved.

Author information
  • Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shangluo University, 726000, Shangluo, ChinaZan Yan
  • Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, 726000, Shangluo, ChinaZan Yan
References
  1. Lebedeva, O.K., Yu, K.D., Root, N.V., Kustov, L.M., Dunaev, S.F., and Kazansky, V.B., Dokl. Chem., 2018, vol. 479, no. 2, p. 41. https://doi.org/10.1134/S001250081804002X
  2. Korobov, I.I., Kovalev, D.Y., Vinokurov, A.A., Nadkhina, S.E., and Shilkin, S.P., Russ. J. Gen. Chem., 2020, vol. 90, no. 5, p. 924. https://doi.org/10.1134/S1070363220050291
  3. Akono, A.T., Cui, Y., Kataruka, A., Anderson, K., and Kabir, P., Mech. Material., 2018, vol. 118, no. 3, p. 74. https://doi.org/10.1016/j.mechmat.2017.12.007
  4. Sotniczuk, A., Kuczynska-Zemla, D., Krolikowski, A., and Garbacz, H., Corr. Sci., 2019, vol. 147, no. 2, p. 342. https://doi.org/10.1016/j.corsci.2018.11.016
  5. Gerasimova, L.G., Maslova, M.V., Shchukina, E.S., and Nikolaev, A.I., Dokl. Chem., 2018. vol. 480, no. 1, p. 103. https://doi.org/10.1134/S001250081805004X
  6. Fu, Y., Chen, H., Guo, R., Huang, Y., and Toroghinejad, M.R., J. Alloys Comp., 2021, vol. 888, p. 161507. https://doi.org/10.1016/j.jallcom.2021.161507
  7. Liu, C., Zhao, Y., Wang, Y., Zhang, T., and Jia, H., J. Mech. Des. 2021, vol. 143, no. 12, p. 123401. https://doi.org/10.1115/1.4051137
  8. Mizukoshi, Y., Ohwada, M., Seino, S., Horibed, H., Nishimura, Y., and Terashima, C., Appl. Surf. Sci., 2019, vol. 489, no. 9, p. 255. https://doi.org/10.1016/j.apsusc.2019.05.353
  9. Chen, X., Zhang, B., Gong, Y., Zhou, P., and Li, H., Appl. Surf. Sci., 2018, vol. 439, p. 60. https://doi.org/10.1016/j.apsusc.2018.01.014
  10. Ghanbari, S. and Bahr, D.F., J. Mat. Res., 2019, vol. 34, no. 7, p. 1. https://doi.org/10.1557/jmr.2019.41
  11. Dahlan, A.S., Silicon, 2019, vol. 11, no. 4, p. 1949. https://doi.org/10.1007/s12633-018-0015-x
  12. Ivanenko, V.I., Maslova, M.V., and Krivovichev, S.V., Dokl. Chem., 2020, vol. 490, no. 1, p. 16. https://doi.org/10.1134/S0012500820010024
  13. Nadzirah, S., Gopinath, S.C.B., Parmin, N.A., Hamzah, A.A., and Dee, C.F. Crl. Rev., 2020, vol. 1, p. 1. https://doi.org/10.1080/10408347.2020.1816447
  14. Wang, G., Wang, S., Yang, X., Yu, X., and Zhang, M., Sur. Coat. Tech., 2020, vol. 405, no. 2, p.126512. https://doi.org/10.1016/j.surfcoat.2020.126512