Properties of the La0.6Sr0.4Co0.8Fe0.2O3 – δ–Ce0.73Gd0.27O2 – δ Composite Cathode Formed from Nanopowders

A. V. Nikonov A. V. Nikonov , N. B. Pavzderin N. B. Pavzderin , V. R. Khrustov V. R. Khrustov
Российский электрохимический журнал
Abstract / Full Text

The La0.6Sr0.4Co0.8Fe0.2O3 – δ–Ce0.73Gd0.27O2 – δ composite cathodes (LSCF–GDC) formed from nanopowders by a standard method of mixing precursors followed by their sintering have been investigated. The optimal sintering temperature is found to be 1100°С. No secondary phases are formed in the LSCF and GDC mixture (1 : 1) even at 1400°С. The characteristics of the LSCF–GDC cathodes are found to degrade with the increase in the GDC fraction. The addition of the GDC nanopowder to the composite is shown to accelerate the sintering process, which results in the formation of the denser cathodic structure and, as a consequence, increases the polarization resistance.

Author information
  • Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, 620016, Yekaterinburg, Russia

    A. V. Nikonov, N. B. Pavzderin & V. R. Khrustov

  1. Jiang, S.P., Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—A review, Int. J. Hydrogen Energy, 2019, vol. 44, p. 7448.
  2. Stevenson, J.W., Armstrong, I.R., Carneim, R.D., et al., Electrochemical properties of mixed conducting perovskites La1 – xMxCo1 – yFeyO3 – δ (M = Sr, Ba, Ca), J. Electrochem. Soc., 1996, vol. 143, p. 2722.
  3. Ananyev, M.V., Kurumchin, E.Kh., and Porotnikova, N.M., Effect of oxygen nonstoichiometry on kinetics of oxygen exchange and diffusion in lanthanum–strontium cobaltites, Russ. J. Electrochem., 2010, vol. 46, p. 789.
  4. Wang, Z., Peng, R., Zhang, W., et al., Oxygen reduction and transport on the La1 – xSrxCo1 – yFeyO3 – δ cathode in solid oxide fuel cells: a first-principles study, J. Mater. Chem. A, 2013, vol. 1(41), p. 12932.
  5. Aziz, A.J.A., Baharuddin, N.A., Somalu, M.R., and Muchtar, A., Review of composite cathodes for intermediate-temperature solid oxide fuel cell applications, Ceram. Int., 2020, vol. 46, p. 23314.
  6. Dusastre, V. and Kilner, J.A., Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 1999, vol. 126, p. 163.
  7. Murray, E.P., Sever, M.J., and Barnett, S.A., Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O2 composite cathodes, Solid State Ionics, 2002, vol. 148, p. 27.
  8. Qiang, F., Sun, K.N., Zhang, N.Q., Zhu, X.D., et al., Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy, J. Power Sources, 2007, vol. 168, p. 338.
  9. Leng, Y., Chan, S.H., and Liu, Q., Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte, Int. J. Hydrogen Energy, 2008, vol. 33, p. 3808.
  10. Baharuddin, N.A., Rahman, H.A., Muchtar, A., et al., Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cells, J. Zhejiang Univ.- Sci. A (Appl. Phys. & Eng.), 2013, vol. 14, p. 11.
  11. Chen, X.J., Chan, S.H., and Khor, K.A., Simulation of a composite cathode in solid oxide fuel cells, Electrochim. Acta, 2004, vol. 49, p. 1851.
  12. Sun, C., Hui, R., and Roller, J., Cathode materials for solid oxide fuel cells: a review, J. Solid State Electrochem., 2010, vol. 14, p. 1125.
  13. Zhao, E., Jia, Z., Zhao, L., Xiong, Y., et al., One dimensional La0.8Sr0.2Co0.2Fe0.8O3 – δ/Ce0.8Gd0.2O1.9 nanocomposite cathodes for intermediate temperature solid oxide fuel cells, J. Power Sources, 2012, vol. 219, p. 133.
  14. Burye, T.E. and Nicholas, J.D., Improving La0.6Sr0.4Co0.8Fe0.2O3 – δ infiltrated solid oxide fuel cell cathode performance through precursor solution desiccation, J. Power Sources, 2015, vol. 276, p. 54.
  15. Sindirac, C., Buyukaksoy, A., and Akkurt, S., Electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O2 – δ composite SOFC cathodes fabricated by electrocatalyst and/or electrocatalyst-ionic conductor infiltration, J. Sol–Gel Sci. Technol., 2019, vol. 92, p. 45.
  16. Ivanov, M., Osipov, V., Kotov, Yu., et al., Laser synthesis of oxide nanopowders, Adv. Sci. Technol., 2006, vol. 45, p. 291.
  17. Wang, S., Kato, T., Nagata, S., et al., Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9–Ag cathode for ceria electrolyte SOFCs, Solid State Ionics, 2002, vol. 146, p. 203.
  18. Khan, M.Z., Song, R.-H., Mehran, M.T., Lee, S.-B., and Lim, T.-H., Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review, Ceram. Int., 2021, vol. 47, p. 5839.
  19. Sakai, N., Kishimoto, H., Yamaji, K., et al., Degradation behavior at interface of LSCF cathodes and rare earth doped ceria, ECS Trans., 2007, vol. 7, p. 389.
  20. Tai, L.-W., Nasrallah, M.M., Anderson, H.U., et al., Structure and electrical properties of La1 – xSrxCo1 – yFeyO3. Part 2. The system La1 – xSrxCo0.2Fe0.8O3, Solid State Ionics, 1995, vol. 76, p. 273.
  21. Mineshige, A., Izutsu, J., Nakamura, M., Nigaki, K., et al., Electrical property, crystal structure and oxygen nonstoichiometry of La1 – xSrxCo0.2Fe0.8O3 – δ, Electrochemistry, 2000, vol. 68, p. 515.
  22. Wang, S., Katsuki, M., Dokiya, M., and Hashimoto, T., High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3 – δ phase structure and electrical conductivity, Solid State Ionics, 2003, vol. 159, p. 71.
  23. Xu, Q., Huang, D., Chen, W., Zhang, F., and Wang, B., Structure, electrical conducting and thermal expansion properties of Ln0.6Sr0.4Co0.2Fe0.8O3 (Ln = La, Pr, Nd, Sm) perovskite-type complex oxides, J. Alloy Compd., 2007, vol. 429, p. 34.
  24. Orikasa, Y., Ina, T., Nakao, T., Mineshige, A., et al., An X-ray absorption spectroscopic study on mixed conductive La0.6Sr0.4Co0.8Fe0.2O3 – δ cathodes. I. Electrical conductivity and electronic structure, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 16637.
  25. Araki, W., Arai, Y., and Malzbender, J., Transitions of Ba0.5Sr0.5Co0.8Fe0.2O3 – δ and La0.58Sr0.4Co0.2Fe0.8O3 – δ, Mater. Lett., 2014, vol. 132, p. 295.
  26. Ali, S.A.M., Anwar, M., Ashikin, N., et al., Influence of oxygen ion enrichment on optical, mechanical, and electrical properties of LSCF perovskite nanocomposite, Ceram. Int., 2018, vol. 44, p. 10433.
  27. Strauffer, D. and Aharony, A., Introduction to Percolation Theory, London: Taylor & Francis, 1994.
  28. Dees, D.W., Claar, T.D., Easier, T.E., Fee, D.C., and Vlrazek, F.C., Conductivity of porous Ni/ZrO2–Y2O3 cermets, J. Electrochem. Soc., 1987, vol. 134, p. 2141.
  29. Spirin, A.V., Nikonov, A.V., Lipilin, A.S., et al., Effect of structural parameters of Ni-ScSZ cermet components on the SOFC anodes characteristics, Russ. J. Electrochem., 2016, vol. 52, p. 613.
  30. Santos-Gómez, L., Porras-Vázquez, J.M., Losilla, E.R., et al., LSCF-CGO nanocomposite cathodes deposited in a single step by spray pyrolysis, J. Eur. Ceram. Soc., 2018, vol. 38, p. 1647.
  31. Chen, Y., Bu, Y., Zhang, Y., Yan, R., Ding, D., et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells, Adv. Energy Mater., 2017, vol. 7(6), p. 1601890.
  32. Kim, J.-D., Kim, G.-D., Moon, J.-W., Park, Y., et al., Characterization of LSM–YSZ composite electrode by ac impedance spectroscopy, Solid State Ionics, 2001, vol. 143, p. 379.
  33. Wu, L., Jiang, Z., Wang, S., and Xia, C., (La,Sr)MnO3–(Y,Bi)2O3 composite cathodes for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2013, vol. 38, p. 2398.
  34. Santos-Gómez, L., Losilla, E.R., Martin, F., et al., Novel microstructural strategies to enhance the electrochemical performance of La0.8Sr0.2MnO3 – δ cathodes, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 7197.
  35. Dumaisnil, K., Fasquelle, D., Mascot, M., Rolle, A., et al., Synthesis and characterization of La0.6Sr0.4Co0.8Fe0.2O3 films for solid oxide fuel cell cathodes, Thin Solid Films, 2014, vol. 553, p. 89.
  36. Mosialek, M., Kędra, A., Krzan, M., et al., Ba0.5Sr0.5Co0.8Fe0.2O3 – δ–La0.6Sr0.4Co0.8Fe0.2O3 – δ composite cathode for solid oxide fuel cell, Arch. Metall. Mater., 2016, vol. 61(3), p. 1483.
  37. Matera, A., Fasquelle, D., Kahlaoui, M., et al., Synthesis, characterization, and electrochemical properties of bilayered cathode films deposited on co-doped ceria, Chin. J. Phys., 2017, vol. 55, p. 2577.
  38. Wang, H., Zhang, X., Zhang, W., Wei, Z., et al., Enhancing catalysis activity of La0.6Sr0.4Co0.8Fe0.2O3 – δ cathode for solid oxide fuel cell by a facile and efficient impregnation process, Int. J. Hydrogen Energy, 2019, vol. 44, p. 13757.
  39. Sindirac, C. and Akkurt, S., Microstructural investigation of the effect of electrospraying parameters on LSCF films, Int. J. Hydrogen Energy, 2020, vol. 45, p. 35139.
  40. Joh, D.W., Cha, A., Park, J.H., Kim, K.J., et al., In situ synthesized La0.6Sr0.4Co0.2Fe0.8O3 – δ–Gd0.1Ce0.9O1.95 nanocomposite cathodes via a modified sol–gel process for intermediate temperature solid oxide fuel cells, ACS Appl. Nano Mater., 2018, vol. 1(6), p. 2934.
  41. Shimada, H., Sumi, H., Yamaguchi, Y., and Fujishiro, Y., High-performance Gd0.5Sr0.5CoO3 – δ and Ce0.8Gd0.2O1.9 nanocomposite cathode for achieving high power density in solid oxide fuel cells, Electrochim. Acta, 2021, vol. 368, p. 137679.