Electrochemical capacitance study of cellulose-manganese dioxide nano-composite

H. Adelkhani H. Adelkhani , T. Heidarpour T. Heidarpour , Kh. Didehban Kh. Didehban
Российский электрохимический журнал
Abstract / Full Text

In this study, cellulose-manganese dioxide nano-composites were synthesized and their electrochemical behavior studied as electrode in an electrochemical supercapacitor (ECS). The morphology of composites were investigated by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) was used to determine the thermal stability and water content of the composites. The electrochemical capacitance of the composites is studied by cyclic voltammetry (CV) in Na2SO4 electrolyte (0.5 M) at room temperature. The results show that the capacitance of the composites are strongly affected by the nano-structure, structural continuity, thermal stability and surface/structural water of manganese dioxide. A high specific capacitance of 171 F/g was obtained for cellulose-manganese dioxide nano-composite which has higher structural continuity, lower water content and better thermal stability.

Author information
  • Nuclear Fuel Cycle Research School, NSTRI, Tehran, Iran

    H. Adelkhani

  • Department of Chemistry, Payame Noor University, Tehran, Iran

    T. Heidarpour & Kh. Didehban

  1. Nishino, T., Matsuda, I., and Hirao, K., All-cellulose composite, Macromolecules, 2004, vol. 37, pp. 7683–7687.
  2. Gimenez, A.J., Yanez-Limon, J.M., and Seminario, J.M., ZnO–cellulose composite for UV sensing, Sensors J., IEEE, 2012, vol. 13, pp. 1301–1306.
  3. Huang, H.D., Liu, C.Y., Zhou, D., Jiang, X., Zhong, G.J., Yan, D.X., and Li, Z.M., Cellulose composite aerogel for highly efficient electromagnetic interference shielding, J. Mater. Chem. A, 2015, vol. 3, pp. 4983–4991.
  4. Yousefi, H., Faezipour, M., Nishino, T., Shakeri, A., and Ebrahimi, G., All-cellulose composite and nanocomposite made from partially dissolved micro-and nanofibers of canola straw, Polym. J., 2011, vol. 43, pp. 559–564.
  5. Ren, X.B., Lu, H.Y., Lin, H.B., Liu, Y.N., and Xing, Y., Preparation and characterization of the Ti/IrO2/WO3 as supercapacitor electrode materials, Russ. J. Electrochem., 2010, vol. 46, pp. 77–80.
  6. Solyanikova, A.S., Chayka, M.Yu., Boryak, A.V., Kravchenko, T.A., Glotov, A.V., Ponomarenko, I.V., and Kirik, S.D., Composite electrodes of electrochemical capacitors based on carbon materials with different structure, Russ. J. Electrochem., 2014, vol. 50, pp. 419–428.
  7. Sapurina, Yu., Kompan, M.E., and Shishov, M.A., Polymer–carbonaceous composites as electrode materials with high electrochemical capacitance, Russ. J. Electrochem., 2015, vol. 51, pp. 528–537.
  8. Ji, C.C., Bao, S.J., Lu, Z.J., Cai, C.J., Yang, F., Wei, H., and Chai, H., 3D interpenetrating macroporous graphene aerogels with MnO2 coating for supercapacitors, Russ. J. Electrochem., 2015, vol. 51, pp. 782–788.
  9. Didehban, Kh., Akbari, M., and Adelkhani, H., Application of polyacrylamide–ZnO composite as electrode in electrochemical supercapacitor, Iran. J. Chem. Chem. Eng., 2015, vol. 34, pp. 39–43.
  10. Adelkhani, H., Didehban, Kh., and Hayasi, M., Performance evaluation of polyacrylamide/silver composite as electrode material in electrochemical capacitor, Current Appl. Phys., 2013, vol. 13, pp. 522–525.
  11. Adelkhani, H., Functionalized electrolytic manganese dioxide nanostructure prepared at fixed pH for electrochemical supercapacitor, J. Electrochem. Soc., 2009, vol. 156, pp. A791–A795.
  12. Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., and Pereira-Ramos, J.P., Raman spectra of birnessite manganese dioxides, Solid State Ionics, 2003, vol. 159, pp. 345–356.
  13. Abdel Moteleb, M.M., Electrical conductance of some cellulose derivatives, Polym. Bull., 1992, vol. 28, pp. 689–695.
  14. Baptista, A., Ferreira, I., and Borges, J., Cellulosebased bio-electronic devices. http://dx.doi.org/. 2013. doi 10.5772/56721
  15. Wang, Y., Zhang, X., He, X., Zhang, W., Zhang, X., and Lu, C., In situ synthesis of MnO2 coated cellulose nanofibers hybrid for effective removal of methylene blue, Carbohydrate Polym., 2014, vol. 110, pp. 302–308.
  16. Sugano, Y., Vestergaard, M., Yoshikawa, H., Saito, M., and Tamiya, E., Direct electrochemical oxidation of cellulose: acellulose-based fuel cell system, Electroanalysis, 2010, vol. 22, pp. 1688–1694.
  17. Li, Y., Wang, J., Zhang, Y., NorouziBanis, M., Liu, J., Geng, D., Li, R., and Sun, X., Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method, J. Colloid Interface Sci., 2012, vol. 369, pp. 123–128.
  18. Su, L., Gong, L., Lu, H., and Xu, Q., Enhanced lowtemperature capacitance of MnO2 nanorods in a redoxactive electrolyte, J. Power Sources, 2014, vol. 248, pp. 212–217.
  19. Xiao, W., Xia, H., Fuh, J.Y.H., and Lu, L., Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties, J. Power Sources, 2009, vol. 193, pp. 935–938.
  20. Zhang, Q.X., Peng, D., and Huang, X.J., Effect of morphology of α-MnO2 nanocrystal on electrochemical detection of toxic metal ions, Electrochem. Commun., 2013, vol. 34, pp. 270–273.
  21. Ming, B., Li, J., Kang, F., Pang, G., Zhang, Y., Chen, L., Xu, J., and Wang, X., Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials, J. Power Sources, 2012, vol. 198, pp. 428–431.
  22. Yan, J., Wei, T., Fan, Z., Qian, W., Zhang, M., Shen, X., and Wei, F., Supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density, J. Power Sources, 2010, vol. 195, pp. 3041–3045.
  23. Paik, Y., Osegovic, J.P., Wang, F., Bowden, W., and Grey, C.P., H-2 MAS NMR studies of the manganese dioxide tunnel structures and hydroxides used as cathode materials in primary batteries, J. Am. Chem. Soc., 2001, vol. 123, pp. 9367–9377.
  24. Donne, C.W. and Kennedy, J.H., Transmission line modeling of the manganese dioxide electrode in concentrated KOH electrolytes, J. Appl. Electrochem., 2004, vol. 34, pp. 477–486.
  25. Ghaemi, M., Amrollahi, R., Ataherian, F., and Kassaee, M.Z., New advances on bipolar rechargeable alkaline manganese dioxide–zinc batteries, J. Power Sources, 2003, vol. 117, pp. 233–241.
  26. Long, J.W., Dunn, B., Rolison, D.R., and White, H.S., Three-dimensional battery architectures, Chem. Rev., 2004, vol. 104, pp. 4463–4492.