Determination of Tryptophan by Using of Activated Multi-Walled Carbon Nanotube Ionic Liquid Electrode

Elham Rezaee Elham Rezaee , Fatemeh Honarasa Fatemeh Honarasa
Российский электрохимический журнал
Abstract / Full Text

Determination of tryptophan was performed by using of an easy to prepared electrode. Basically, the electrode was prepared by using of ionic liquid and multi-walled carbon nanotube as main constituents. Then, the electrode surface was activated by cycling the potential. The activated multi-walled ionic liquid electrode shows facile electro-oxidation and good stability for determination of tryptophan. Linear range and limit of detection were obtained as 5 × 10–6 to 1 × 10–3 and 2.3 × 10–6 M, respectively. Finally, determination of tryptophan in real samples (commercial amino acid injection and blood serum) was performed successfully. The high activity of the proposed electrode is attributed to the simultaneous presence of ionic liquid and multi-walled carbon nanotube in the electrode content.

Author information
  • Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran

    Elham Rezaee & Fatemeh Honarasa

  1. Delgado-Andrade, C., Rufián-Henares, J.A., Jiménez-Pérez, S., and Morales, F.J., Tryptophan determination in milk-based ingredients and dried sport supplements by liquid chromatography with fluorescence detection, Food Chem., 2006, vol. 98, pp. 580–585. doi 10.1016/j.foodchem.2005.07.036
  2. Keyvanfard, M., Shakeri, R., Karimi-Maleh, H., and Alizad, K., Highly selective and sensitive voltammetric sensor based on modified multiwall carbon nanotube paste electrode for simultaneous determination of ascorbic acid, acetaminophen and tryptophan, Mater. Sci. Eng., C, 2013, vol. 33, pp. 811–816. doi 10.1016/j.msec.2012.11.005
  3. Rajabzadeh, N., Benvidi, A., Mazloum-Ardakani, M., Firouzabadi, A.D., and Vafazadeh, R., A highly sensitive sensor based on reduced graphene oxide, carbon nanotube and a Co(II) complex modified carbon paste electrode: Simultaneous determination of isoprenaline, captopril and tryptophan. Electroanalysis, 2015, vol. 27, pp. 2792–2799. doi 10.1002/elan.201500236
  4. Guo, Y., Guo, S., Fang, Y., and Dong, S., Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan, Electrochim. Acta, 2010, vol. 55, pp. 3927–3931. doi 10.1016/j.electacta.2010.02.024
  5. Jiao, L., Bing, S., Zhang, X., Wang, Y., and Li, H., Application of fluorescence spectroscopy combined with interval partial least squares to the determination of enantiomeric composition of tryptophan, Chemom. Intell. Lab. Syst., 2016, vol. 156, pp. 181–187. doi 10.1016/j.chemolab.2016.06.005
  6. Yokuş, Ö.A., Kardaş, F., Akyildirim, O., Eren, T., Atar, N., and Yola, M.L., Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: Application to the simultaneous determination of l-tyrosine and l-tryptophan, Sens. Actuators, B, 2016, vol. 233, pp. 47–54. doi 10.1016/j.snb.2016.04.050
  7. Allen, M.J., Tung, V.C., and Kaner, R.B., Honeycomb carbon: A review of grapheme, Chem. Rev., 2010, vol. 110, pp. 132–145. doi 10.1021/cr900070d
  8. Yousefinejad, S., Rasti, H., Hajebi, M., Kowsari, M., Sadravi, S., and Honarasa, F., Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level, Sens. Actuators, B, 2017, vol. 247, pp. 691–696. doi 10.1016/j.snb.2017.02.145
  9. Trojanowicz, M., Analytical applications of carbon nanotubes: A review, TrAC, Trends Anal. Chem., 2006, vol. 25, pp. 480–489. doi 10.1016/j.trac.2005.11.008
  10. Wang, J., Carbon-nanotube based electrochemical biosensors: A review, Electroanalysis, 2005, vol. 17, pp. 7–14. doi 10.1002/elan.200403113
  11. Jacobs, C.B., Peairs, M.J., and Venton, B.J., Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta, 2010, vol. 662, pp. 105–127. doi 10.1016/j.aca.2010.01.009
  12. Honarasa, F., Zare, M., and Yousefinejad, S., Comparison of different carbon nanostructures influence on potentiometric performance of carbon paste electrode, Russ. J. Electrochem., 2016, vol. 52, pp. 955–959. doi 10.1134/S1023193516100050
  13. Qi Wang, J.Z., Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in hyaluronic acid and single walled carbon nanotubes composite film, Chem. Pap., 2010, vol. 65, pp. 566–572. doi 10.2478/s11696-010-0053-3
  14. Banks, C.E., Crossley, A., Salter, C., Wilkins, S.J., and Compton, R.G., Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes, Angew. Chem., Int. Ed., 2006, vol. 45, pp. 2533–2537. doi 10.1002/anie.200600033
  15. Banks, C.E., Davies, T.J., Wildgoose, G.G., and Compton, R.G., Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites, Chem. Commun., 2005, vol. 829–841. doi 10.1039/B413177K
  16. Banks, C.E., Moore, R.R., Davies, T.J., Compton, R.G., and Road, S.P., Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes, Chem. Commun., 2004, vol. 2, pp. 1804–1805. doi 10.1039/b406276k
  17. Musameh, M., Lawrence, N.S., and Wang, J., Electrochemical activation of carbon nanotubes, Electrochem. Commun., 2005, vol. 7, pp. 14–18. doi 10.1016/j.elecom. 2004.10.007
  18. Pumera, M., Sasaki, T., and Iwai, H., Relationship between carbon nanotube structure and electrochemical behavior: Heterogeneous electron transfer at electrochemically activated carbon nanotubes, Asian J. Chem., 2008, vol. 3, pp. 2046–2055. doi 10.1002/asia.200800218
  19. Yu, L.-Y., Liu, Q., Wu, X.-W., Jiang, X.-Y., Yu, J.-G., and Chen, X.-Q., Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube–chitosan composite modified glassy carbon electrode, RSC Adv., 2015, vol. 5, pp. 98020–9805. doi 10.1039/C5RA20082B
  20. D’Souza, O.J., Mascarenhas, R.J., Satpati, A.K., and Aiman, L.V., Electrocatalytic oxidation of L-tyrosine at carboxylic acid functionalized multi-walled carbon nanotubes modified carbon paste electrode, Ionics (Kiel), 2015, vol. 22, pp. 405–414. doi 10.1007/s11581-015-1552-6
  21. Shahrokhian, S. and Fotouhi, L., Carbon paste electrode incorporating multi-walled carbon nanotube/ cobalt salophen for sensitive voltammetric determination of tryptophan, Sens. Actuators, B, 2007, vol. 123, pp. 942–949. doi 10.1016/j.snb.2006.10.053
  22. D’Souza, O.J., Mascarenhas, R.J., Thomas, T., Namboothiri, I.N.N., Rajamathi, M., Martis, P., et al., Electrochemical determination of L-Tryptophan based on a multiwall carbon nanotube/Mg-Al layered double hydroxide modified carbon paste electrode as a sensor, J. Electroanal. Chem., 2013, vol. 704, pp. 220–226. doi 10.1016/j.jelechem.2013.07.009
  23. Baytak, A.K. and Aslanoglu, M., Voltammetric quantification of tryptophan using a MWCNT modified GCE decorated with electrochemically produced nanoparticles of nickel, Sens. Actuators, B., 2015, vol. 220, pp. 1161–1168. doi 10.1016/j.snb.2015.06.105
  24. Opallo, M. and Lesniewski, A., A review on electrodes modified with ionic liquids, J. Electroanal. Chem., 2011, vol. 656, pp. 2–16. doi 10.1016/j.jelechem.2011.01.008
  25. Maleki, N., Safavi, A., and Tajabadi, F., High-performance carbon composite electrode based on an ionic liquid as a binder, Anal. Chem., 2006, vol. 78, pp. 3820–3826. doi 10.1021/ac060070+
  26. Safavi, A., Maleki, N., Honarasa, F., Tajabadi, F., and Sedaghatpour, F., Ionic liquids modify the performance of carbon based potentiometric sensors, Electroanalysis, 2007, vol. 19, pp. 582–586. doi 10.1002/elan.200603767
  27. Ensafi, A.A. and Karimi-Maleh, H., Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode, Drug Test. Anal., 2011, vol. 3, pp. 325–330. doi 10.1002/dta.232
  28. Jiang, Q., Sun, W., and Jiao, K., Electrochemical behavior and determination of L-tryptophan on carbon ionic liquid electrode, J. Anal. Chem., 2010, vol. 65, pp. 648–651. doi 10.1134/S106193481006016X
  29. Safavi, A. and Momeni, S., Electrocatalytic oxidation of tryptophan at gold nanoparticle-modified carbon ionic liquid electrode, Electroanalysis, 2010, vol. 22, pp. 2848–2855. doi 10.1002/elan.201000279
  30. Li, F., Zhang, Q., Pan, D., Lin, M., and Kang, Q., Electrochemical determination of tryptophan at roomtemperature ionic liquid-titanium carbide nanoparticle gel modified electrode, Ionics (Kiel), 2015, vol. 21, pp. 1711–1718. doi 10.1007/s11581-014-1312-z
  31. Khaleghi, F., Irai, A.E., Gupta, V.K., Agarwal, S., Bijad, M., and Abbasghorbani, M., Highly sensitive nanostructure voltammetric sensor employing Pt/CNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate for determination of tryptophan in food and pharmaceutical samples, J. Mol. Liq., 2016, vol. 223, pp. 431–435. doi 10.1016/j.molliq.2016.08.058
  32. Hong, X., Zhu, Y., and Ma, J., Application of multiwalled carbon nanotubes/ionic liquid modified electrode for amperometric determination of sulfadiazine, Drug Test. Anal., 2012, vol. 4, pp. 1034–1039. doi 10.1002/dta.329
  33. Safavi, A., Maleki, N., Aghakhani Mahyari, F., and Doroodmand, M.M., Comparative study of carbon ionic liquid electrodes based on different carbon allotropes as conductive phase, Fullerenes, Nanotubes, Carbon Nanostruct., 2013, vol. 21, pp. 472–484. doi 10.1080/1536383X.2011.629760
  34. Nguyen, N.T., Wrona, M.Z., and Dryhurst, G., Electrochemical oxidation of tryptophan, J. Electroanal. Chem. Interfacial Electrochem., 1986, vol. 199, pp. 101–126. doi 10.1016/0022-0728(86)87045-0
  35. Zoulis, N.E., Nikolelis, D.P., and Efstathiou, C.E., Pre-concentration of indolic compounds at a carbon paste electrode and indirect determination of L-tryptophan in serum by adsorptive stripping voltammetry, Analyst, 1990, vol. 115, p. 291. doi 10.1039/an9901500291
  36. Thomas, T., Mascarenhas, R.J., D’Souza, O.J., Martis, P., Dalhalle, J., and Kumara Swamy, B.E., Multiwalled carbon nanotube modified carbon paste electrode as a sensor for the amperometric detection of l-tryptophan in biological samples, J. Colloid Interface Sci., 2013, vol. 402, pp. 223–229. doi 10.1016/j.jcis.2013.03.059
  37. Fiorucci, A.R. and Cavalheiro, E.T.G., The use of carbon paste electrode in the direct voltammetric determination of tryptophan in pharmaceutical formulations, J. Pharm. Biomed. Anal., 2002, vol. 28, pp. 909–915.