A Novel Electrochemical Sensor Based on Graphene Oxide Nanosheets and Ionic Liquid Binder for Differential Pulse Voltammetric Determination of Droxidopa in Pharmaceutical and Urine Samples

S. Z. Mohammadi S. Z. Mohammadi , H. Beitollahi H. Beitollahi , M. Kaykhaii M. Kaykhaii , N. Mohammadizadeh N. Mohammadizadeh
Российский электрохимический журнал
Abstract / Full Text

Droxidopa is a synthetic amino acid that undergoes conversion to the potent vasoconstrictor norepinephrine in the presence of aromatic amino-acid decarboxylase and pyridoxal phosphate. It is effective for the treatment of frozen gait and dizziness on standing associated with Parkinson’s disease and for the treatment of orthostatic hypotension. In the present work, the anodic oxidation of droxidopa at the surface of novel carbon paste electrode adjusted with ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) and graphene oxide (GOILCPE) was studied. The structure of the modified electrode was examined via SEM. The electrochemical discernment of the modified electrode was conducted via cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). DPV demonstrates a linear response within the 1.0 × 10–7 to 6.0 × 10–4 M range for droxidopa. A detection limit of 3.0 × 10–8 M was obtained. Finally, the modified electrode was applied with success for the accurate detection of droxidopa content within real samples.

Author information
  • Department of Chemistry, Payame Noor University, Tehran, Iran

    S. Z. Mohammadi

  • Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

    H. Beitollahi

  • Department of Chemistry, University of Sistan and Baluchestan, Zahedan, Iran

    M. Kaykhaii & N. Mohammadizadeh

  1. Kumar Gupta, V., Sadeghi, R., and Karimi, F., A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples, Sens. Actuat. B, 2013, vol. 186, p. 603.
  2. Goyal, R.N., Gupta, V.K., and Chatterjee, S., A sensitive voltammetric sensor for determination of synthetic corticosteroid triamcinolone, abused for doping, Biosens. Bioelectron., 2009, vol. 24, p. 3562.
  3. Ensafi, A.A., Dadkhah-Tehrani, S., and Karimi-Maleh, H., Voltammetric determination of glutathione in haemolysed erythrocyte and tablet samples using modifiedmultiwall carbon nanotubes paste electrode, Drug Test. Anal., 2012, vol. 4, p. 978.
  4. Beitollahi, H., Ghofrani Ivari, S., and Torkzadeh-Mahani, M., Application of antibody nanogold-ionic liquid-carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone, Biosens. Bioelectron., 2018, vol. 110, p. 97.
  5. Kaufmann, H., Norcliffe-Kaufmann, L., and Palma, J.-A., Droxidopa in neurogenic orthostatic hypotension, Expert. Rev. Cardiovasc. Ther., 2015, vol. 13, p. 875.
  6. Özdokur, K.V., Engin, E., Yengin, Ç., Ertaş, H., and Nil Ertaş, F., Determination of carbidopa, levodopa, and droxidopa by high-performance liquid chromatography-tandem mass spectrometry, Anal. Lett., 2018, vol. 51, p. 73.
  7. Goldstein, D.S., Kopin, I.J., and Sharabi, Y., Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders, Pharmacol. Therap., 2014, vol. 144, p. 268.
  8. Baghayeri, M., Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital, Sens. Actuat. B, 2017, vol. 240, p. 255.
  9. Mohammadi, S.Z., Beitollahi, H., Nikpour, N., and Hosseinzadeh, R., Electrochemical sensor for determination of ascorbic acid using a 2chlorobenzoyl ferrocene/carbon nanotube paste electrode, Anal. Bioanal. Chem. Res., 2016, vol. 3, p. 187.
  10. Rohani, T., Mohammadi, S.Z., Karimi, M.A., and Amini, S., Green synthesized silver nanoparticles@zeolite type A hybridized with carbon ceramic, AgZA-CCE, as a new nano-electrocatalyst for detection of ultra-trace amounts of rutin, Chem. Phys. Lett., 2018, vol. 713, p. 259.
  11. Mohammadi, S.Z., Beitollahi, H., and Hassanzadeh, M., Voltammetric determination of tryptophan using a carbon paste electrode modified with magnesium core shell nanocomposite and ionic liquids, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 55.
  12. Baghbamidi, S.E., Beitollahi, H., and Tajik, S., Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine, Anal. Bioanal. Electrochem., 2014, vol. 6, p. 634.
  13. Mohammadi, S.Z., Beitollahi, H., and Fadaeian, H., Voltammetric determination of isoproterenol using a graphene oxide nano sheets paste electrode, J. Anal. Chem., 2018, vol. 73, p. 705.
  14. Mosazadeh, F., Mohammadi, S.Z., and Sarhadi, A.H., Electrochemical determination of acetaminophen by using modified screen printed carbon electrode, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 1163.
  15. Goyal, R.N., Oyama, M., Gupta, V.K., Singh, S.P., and Chatterjee, S., Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes, Sens. Actuat. B, 2008, vol. 134, p. 816.
  16. Beitollahi, H. and Tajik, S., Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A, Environ. Monit. Assess, 2015, vol. 187, p. 1.
  17. Mohammadi, S.Z., Reiahipour, E., and Mosazadeh, F., Screen-printed electrodes modified with magnetic core–shell nanoparticles film for the development of a sensor for imipramine detection, Anal. Bioanal. Electrochem., 2018, vol. 10, p. 383.
  18. Mohammadizadeh, N., Mohammadi, S.Z., and Kaykhaii, M., Carbon paste electrode modified with ZrO2 nanoparticles and ionic liquid for sensing of dopamine in the presence of uric acid, J. Anal. Chem., 2018, vol. 73, p. 685.
  19. Mohammadi, S.Z., Beitollahi, H., and Mousavi, M., Determination of hydroxylamine using a carbon paste electrode modified with graphene oxide nano sheets, Rus. J. Electrochem., 2017, vol. 53, p. 374.
  20. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydroquinazolinyl)-N_-phenyl-hydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.
  21. Mohammadi, S.Z., Sarhadi, A.H., and Mosazadeh, F., Screen-printed electrode modified with magnetic core-shell nanoparticles for detection of chlorpromazine, Anal. Bioanal. Chem. Res., 2018, vol. 5, p. 363.
  22. Beitollahi, H., Nekooei, S., and Torkzadeh-Mahani, M., Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode, Talanta, 2018, vol. 188, p. 701.
  23. Mohammadi, S.Z., Beitollahi, H., and Tajik, S., Nonenzymatic coated screen-printed electrode for electrochemical determination of acetylcholine, Micro Nano Syst. Lett., 2018, vol. 6, p. 9. https://doi.org/10.1186/s40486-018-0070-5
  24. Mohammadi, S.Z., Beitollahi, H., and Bani Asadi, E., Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode, Environ. Monit. Assess, 2015, vol. 187, p. 122.
  25. Zhang, J., Tan, X., Zhao, D., Tan, S., Huang, Z., Mi, Y., and Huang, Z., Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes, Electrochim. Acta, 2010, vol. 55, p. 2522.
  26. Ding, M., Zhou, Y., Liang, X., Zou, H., Wang, Z., Wang, M., and Ma, J., An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine, J. Electroanal. Chem., 2016, vol. 763, p. 25.
  27. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater., 2007, vol. 6, p. 183.
  28. Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., and Kim, K., A roadmap for graphene, Nature, 2012, vol. 490, p. 192.
  29. Chabot, V., Higgins, D., Xiao, A.Yu., Chen, Z., and Zhang, J., A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment, Energy Environ. Sci., 2014, vol. 7, p. 1564.
  30. Zhu, J., Yang, D., Yin, Z., Yan, Q., and Zhang, H., Graphene and graphene-based materials for energy storage applications, Small, 2014, vol. 10, p. 3480.
  31. Zhang, Y., Zeng, G.M., Tang, L., Chen, J., Zhu, Y., He, X.X., and He, Y., Electrochemical sensor based on electrodeposited graphene-Au modified electrode and nanoAu carrier amplified signal strategy for attomolar mercury detection, Anal. Chem., 2015, vol. 87, p. 989.
  32. Xie, Y., Yuan, J., Ye, H., Song, P., and Hu, S., Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid, J. Electroanal. Chem., 2015, vol. 749, p. 26.
  33. Vashist, S.K. and Luong, J.H.T., Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites, Carbon, 2015, vol. 84, p. 519.
  34. Halab Shaeli Iessa, K., Zhang, Y., Zhang, G., Xiao, F., and Wang, S., Conductive porous sponge-like ionic liquid-graphene assembly decorated with nanosized polyaniline as active electrode material for supercapacitor, J. Power Sources, 2016, vol. 302, p. 92.
  35. Absalan, G., Akhond, M., Soleimani, M., and Ershadifar, H., Efficient electrocatalytic oxidation and determination of isoniazid on carbon ionic liquid electrode modified with electrodeposited palladium nanoparticles, J. Electroanal. Chem., 2016, vol. 761, p. 1.
  36. Yang, J., Wang, Q., Zhang, M., Zhang, S., and Zhang, L., An electrochemical fungicide pyrimethanil sensor based on carbon nanotubes/ionic-liquid construction modified electrode, Food Chem., 2015, vol. 187, p. 1.
  37. Mohammadi, S.Z., Karimi, M.A., and Mofidinasab, N., Rapid preconcentration of palladium and rhodium using magnetic graphene oxide/silicon dioxide nanocomposite prior to FAAS determination, Anal. Meth., 2019, vol. 11, p. 454.
  38. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.
  39. Tajik, S., Taher, M.A., and Beitollahi, H., Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode, Sens. Actuat. B, 2013, vol. 188, p. 923.
  40. Movlaee, K., Beitollahi, H., Ganjali, M.R., and Norouzi, P., Strategy for simultaneous determination of droxidopa, acetaminophen and tyrosine using carbon paste electrode modified with graphene and ethyl 2-(4-ferrocenyl-[1,2,3]triazol-1-yl) acetate, J. Electrochem. Soc., 2017, vol. 164, p. H407.
  41. Beitollahi, H., Salimi, H., and Ganjali, M.R., Simultaneous voltammetric determination of droxidopa, acetaminophen, and tyrosine on hematoxylin and graphene oxide/ZnO nanocomposite-modified glassy carbon electrode, Ionics, 2018, vol. 24, p. 1487.
  42. Moghaddam, H.M., Beitollahi, H., Tajik, S., Jahani, Sh., Khabazzadeh, H., and Alizadeh, R., Voltammetric determination of droxidopa in the presence of carbidopa using a nanostructured base electrochemical sensor, Russ. J. Electrochem., 2017, vol. 53, p. 452.