Examples



mdbootstrap.com



 
Статья
2016

Lidar Detection of Explosive Vapors in the Atmosphere


S. M. BobrovnikovS. M. Bobrovnikov, A. B. VorozhtsovA. B. Vorozhtsov, E. V. GorlovE. V. Gorlov, V. I. ZharkovV. I. Zharkov, E. M. MaksimovE. M. Maksimov, Yu. N. PanchenkoYu. N. Panchenko, G. V. SakovichG. V. Sakovich
Российский физический журнал
https://doi.org/10.1007/s11182-016-0635-9
Abstract / Full Text

The paper presents results of studying the feasibility of remote detection of explosive vapors in the atmosphere based on the lidar principle using the method of laser fragmentation/laser-induced fluorescence. A project of the mobile, automated, fast-response scanning UV lidar for explosives detection at distances of 10–50 m is presented. Experimental data on the detection of trinitrotoluene (TNT), hexogen (RDX), and Composition B (CompB) vapors at a distance of 13 m are given. The threshold sensitivity of the lidar detector of explosive vapors is estimated. For TNT vapors, the threshold sensitivity of the lidar detector is estimated to be 1∙10−12 g/cm−3 for the detection probability P = 97%.

Author information
  • National Research Tomsk State University, Tomsk, RussiaS. M. Bobrovnikov, A. B. Vorozhtsov & E. V. Gorlov
  • V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaS. M. Bobrovnikov, E. V. Gorlov & V. I. Zharkov
  • Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, Biisk, RussiaA. B. Vorozhtsov & G. V. Sakovich
  • Moscow Institute of Physics and Technology, Moscow, RussiaE. M. Maksimov
  • 5Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaYu. N. Panchenko
References
  1. H. Ostmark, S. Wallin, and H. G. Ang, Proppelants Explos. Pyrotech., 37, 12–23 (2012).
  2. G. W. Lemire, J. B. Simeonsson, and R. C. Sausa, J. Anal. Chem., 65, 529–533 (1993).
  3. D. Wu, J. P. Singh, F Y. Yueh, and D. L. Monts, J. Appl. Opt., 35, 3998–4003 (1996).
  4. J. D. Bradshaw, M. O. Rodgers, S. T. Sandholm, et al., J. Geophys. Res., 90D, 12.861–12.873 (1985).
  5. S. T. Sandholm, J. D. Bradshaw, K. S. Dorris, et al., J. Geophys. Res., 95D, 10.155–10.161 (1990).
  6. N. Daugey, J. Shu, I. Bar, and S. Rosenwaks, J. Appl. Spectrosc., 53, 57–64 (1999).
  7. T. Arusi-Parpar, D. Heflinger, and R. Lavi, J. Appl. Opt., 40, 6677–6681 (2001).
  8. D. Heflinger, T. Arusi-Parpar, Y. Ron, and R. Lavi, J. Opt. Commun., 204, 327–331 (2002).
  9. Yu. N. Panchenko, M. V. Andreev, S. M. Bobrovnikov, et al., Russ. Phys. J., 55, No. 6, 609–615 (2012).
  10. B. C. Dionne, D. P. Rounbehler, E. K. Achter, et al., J. Energetic Mater., 4, 447–472 (1986).
  11. http://www.niic.nsc.ru/en/products/equipments/gsc.