Novel Iron-Based Polynuclear Metal Complexes [FeII(L)(CN)4]2–[FeIII(H2O)3Cl]2: Synthesis and Study of Photovoltaic Properties for Dye-Sensitized Solar Cell

Jue Wang Jue Wang , Chunya Li Chunya Li , Wing-Leung Wong Wing-Leung Wong , Cheuk-Fai Chow Cheuk-Fai Chow
Российский электрохимический журнал
Abstract / Full Text

A series of novel polynuclear iron-based photosensitizers (1–3) with cyano-bridged to form a molecular square were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. The modification of anchoring groups with 4,4'-dicarboxy-2,2'-bipyridine, 2,2'-bipyridine, and 4,4'-dimethoxy-2,2'-bipyridine does not show significant changes on the both absorption and electrochemical properties of these iron-based dyes. This indicates that the polynuclear iron-based photosensitizers have better flexibility to regulate their physical properties of solubility, surface absorption, and thin-film formation for device preparation. The polynuclear new dyes show power conversion efficiencies ranged from 0.43 to 0.48% that is almost the best system among the published iron-based photosensitizers. These iron-based dyes were able to chemisorb on TiO2 surface efficiently and then promoting electron injection and photocurrent generation in a dye-sensitized solar cell with solar irradiation.

Author information
  • Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China

    Jue Wang & Chunya Li

  • Department of Science and Environmental Studies, Centre for Education in Environmental Sustainability, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China

    Wing-Leung Wong & Cheuk-Fai Chow

  1. Balasingam, S.K., Lee, M., Kang, M.G., and Jun, Y., Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum, Chem. Commun., 2013, vol. 49, p. 1471.
  2. Du, Z., Zhang, H., Bao, H., and Zhong, X., Optimization of TiO2 photoanode films for highly efficient quantum dot-sensitized solar cells, J. Mater. Chem. A, 2014, vol. 2, p. 13033.
  3. Lu, X., Lan, T., Qin, Z., Wang, Z.S., and Zhou, G., A near-infrared dithieno[2,3-a:3',2'-c]phenazinebased organic co-sensitizer for highly efficient and stable quasi-solid-state dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 19308.
  4. Mai, C.L., Moehl, T., Hsieh, C.H., Decoppet, J.D., Zakeeruddin, S.M., Grätzel, M., and Yeh, C.Y., Porphyrin sensitizers bearing a pyridine-type anchoring group for dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 14975.
  5. O’Regan, M.G.B., A low-cost, high-effeciency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, vol. 353, p. 737.
  6. Wu, Y., Zhu, W.H., Zakeeruddin, S.M., and Grätzel, M., Insight into D-A-pi-A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2015, vol. 7, p. 9307.
  7. Park, H.J., Kim, K.H., Choi, S.Y., Kim, H.M., Lee, W.I., Kang, Y.K., and Chung, Y.K., Unsymmetric Ru(II) complexes with N-heterocyclic carbene and/or terpyridine ligands: synthesis, characterization, ground-and excited-state electronic structures and their application for DSSC sensitizers, Inorg. Chem., 2010, vol. 49, p. 7340.
  8. Fredin, L.A., Papai, M., Rozsalyi, E., Vanko, G., Warnmark, K., Sundstrom, V., and Persson, P., Exceptional excited-state lifetime of an iron(II)-N-heterocyclic carbene complex explained, J. Phys. Chem. Lett., 2014, vol. 5, p. 2066.
  9. Monari, A., Assfeld, X., Beley, M., and Gros, P.C., Theoretical study of new ruthenium-based dyes for dye-sensitized solar cells, J. Phys. Chem. A, 2011, vol. 115, p. 3596.
  10. Etienne, T., Assfeld, X., and Monari, A., Toward a quantitative assessment of electronic transitions’ charge-transfer character, J. Chem. Theory Comp., 2014, vol. 10, p. 3896.
  11. Juban, E.A., Smeigh, A.L., Monat, J.E., and McCusker, J.K., Ultrafast dynamics of ligand-field excited states, Coordin. Chem. Rev., 2006, vol. 250, p. 1783.
  12. Cannizzo, A., Milne, C.J., Consani, C., Gawelda, W., Bressler, C., van Mourik, F., and Chergui, M., Lightinduced spin crossover in Fe(II)-based complexes: the full photocycle unraveled by ultrafast optical and X-ray spectroscopies, Coordin. Chem. Rev., 2010, vol. 254, p. 2677.
  13. Sano, Y., Onoda, A., and Hayashi, T., A hydrogenase model system based on the sequence of cytochrome c: photochemical hydrogen evolution in aqueous media, Chem. Commun., 2011, vol. 47, p. 8229.
  14. Jamula, L.L., Brown, A.M., Guo, D., and McCusker, J.K., Synthesis and characterization of a high-symmetry ferrous polypyridyl complex: approaching the 5T2/3T1 crossing point for Fe(II), Inorg. Chem., 2014, vol. 53, p. 15.
  15. Li, L.L. and Diau, E.W., Porphyrin-sensitized solar cells, Chem. Soc. Rev., 2013, vol. 42, p. 291.
  16. Bowman, D.N., Blew, J.H., Tsuchiya, T., and Jakubikova, E., Elucidating band-selective sensitization in iron(II) polypyridine-TiO2 assemblies, E., Inorg. Chem., 2013, vol. 52, p. 8621.
  17. Xia, H.L., Ardo, S., Sarjeant, A.A.N., Huang, S., and Meyer, G.J., Photodriven spin change of Fe(II) benzimidazole compounds anchored to nanocrystalline TiO2 thin films, Langmuir, 2009, vol. 25, p. 13641.
  18. Mukherjee, S., Bowman, D.N., and Jakubikova, E., Cyclometalated Fe(II) complexes as sensitizers in dyesensitized solar cells, E., Inorg. Chem., 2015, vol. 54, p. 560.
  19. Liu, Y., Harlang, T., Canton, S.E., Chabera, P., Suarez-Alcantara, K., Fleckhaus, A., Vithanage, D.A., Goransson, E., Corani, A., Lomoth, R., Sundstrom, V., and Warnmark, K., Towards longer-lived metal-toligand charge transfer states of iron(II) complexes: an N-heterocyclic carbene approach, Chem. Commun., 2013, vol. 36, p. 6412.
  20. Duchanois, T., Etienne, T., Cebrián, C., Liu, L., Monari, A., Beley, M., Assfeld, X., Haacke, S., and Gros, P.C., An iron-based photosensitizer with extended excited-state lifetime: photophysical and photovoltaic properties, Eur. J. Inorg. Chem., 2015, vol. 2015, p. 2469.
  21. Bowman, D.N., Mukherjee, S., Barnes, L.J., and Jakubikova, E., Linker dependence of interfacial electron transfer rates in Fe(II)-polypyridine sensitized solar cells, J. Phys. Condens. Mat., 2015, vol. 27, p. 134.
  22. Wu, W., Sun, J., Ji, S., Wu, W., Zhao, J., and Guo, H., Tuning the emissive triplet excited states of platinum( II) Schiff base complexes with pyrene, and application for luminescent oxygen sensing and triplet-triplet-annihilation based upconversions, Dalton Trans., 2011, vol. 40, p. 11550.
  23. Dixon, I.M., Khan, S., Alary, F., Boggio-Pasqua, M., and Heully, J.L., Probing the photophysical capability of mono and bis(cyclometallated) Fe(II) polypyridine complexes using inexpensive ground state DFT, Dalton Trans., 2014, vol. 43, p. 15898.
  24. Canton, S.E., Zhang, X., Daku, M.L.L., Liu, Y., Zhang, J., and Alvarez, S., Mapping the ultrafast changes of continuous shape measures in photoexcited spin crossover complexes without long-range order, J. Phys. Chem. C, 2015, vol. 119, p. 3322.
  25. Sun, Q., Mosquera-Vazquez, S., Daku, L.M.L., Guénée, L., Goodwin, H.A., Vauthey, E., and Hauser, A., Experimental evidence of ultrafast quenching of the 3MLCT luminescence in ruthenium(II) tris-bipyridyl complexes via a 3dd state, J. Am. Chem. Soc., 2013, vol. 135, p. 13660.
  26. Liu, Y., Kjaer, K.S., Fredin, L.A., Chabera, P., Harlang, T., Canton, S.E., Lidin, S., Zhang, J., Lomoth, R., Bergquist, K.E., Persson, P., Warnmark, K., and Sundstrom, V., A heteroleptic ferrous complex with mesoionic bis(1,2,3-triazol-5-ylidene) ligands: taming the MLCT excited state of iron(II), Chem. Eur. J., 2015, vol. 21, p. 3628.
  27. Dixon, I.M., Alary, F., Boggio-Pasqua, M., and Heully, J.L., The (N4C2)2-donor set as promising motif for bis(tridentate) iron(II) photoactive compounds, Inorg. Chem., 2013, vol. 52, p. 13369.
  28. Szaciłowski, K., Chmura, A., and Stasicka, Z., Interplay between iron complexes, nitric oxide and sulfur ligands: structure, (photo)reactivity and biological importance, Coordin. Chem. Rev., 2005, vol. 249, p. 2408.
  29. Bowman, D.N. and Jakubikova, E., Low-spin versus high-spin ground state in pseudo-octahedral iron complexes, Inorg. Chem., 2012, vol. 51, p. 6011.
  30. Brown, A.M., McCusker, C.E., and McCusker, J.K., Spectroelectrochemical identification of charge-transfer excited states in transition metal-based polypyridyl complexes, Dalton. Trans., 2014, vol. 43, p. 17635.
  31. Tobias, Y.L., Harlang, C.B., and Gordivska, O., Iron sensitizer converts light to electrons with 92% yeild, Nature Chem., 2015, vol. 7, p. 883.
  32. Das, A.K., Solomon, R.V., Hofmann, F., and Meuwly, M., Inner-shell water rearrangement following photoexcitation of tris(2,2'-bipyridine)iron(II), J. Phys. Chem. B, 2016, vol. 120, p. 206.
  33. Newton, G.N., Nihei, M., and Oshio, H., Cyanidebridged molecular squares–the building units of Prussian blue, Eur. J. Inorg. Chem., 2011, vol. 20, p. 3031.
  34. Li, F., Clegg, J.K., Goux-Capes, L., Chastanet, G., D’Alessandro, D.M., Létard, J.F., and Kepert, C.J., A mixed-spin molecular square with a hybrid [2×2]grid/metallocyclic architecture, Angew. Chem. Int. Ed., 2011, vol. 50, p. 2820.
  35. Wu, D., Zhang, Y., Huang, W., and Sato, O., An S = 3 cyanide-bridged tetranuclear FeIII2NiII2 square that exhibits slow relaxation of magnetization: synthesis, structure and magnetic properties, Dalton Trans., 2010, vol. 39, p. 5500.
  36. Peng, Y.H., Meng, Y.F., Hu, L., Li, Q.X., Li, Y.Z., Zuo, J.L., and You, X.Z., Syntheses, structures, and magnetic properties of heterobimetallic clusters with tricyanometalate and pi-conjugated ligands containing 1,3-dithiol-2-ylidene, Inorg. Chem., 2010, vol. 49, p. 1905.
  37. Etienne, T., Assfeld, X., and Monari, A., New insight into the topology of excited states through detachment/ attachment density matrices-based centroids of charge, J. Chem. Theory Comp., 2014, vol. 10, p. 3906.
  38. Duchanoi, S.T., Etienne, T., Beley, M., Assfeld, X., Perpète, E.A., Monari, A., and Gros, P.C., Heteroleptic pyridyl-carbene iron complexes with tuneable electronic properties, Eur. J. Inorg. Chem., 2014, vol. 23, p. 3747.
  39. Monari, A., Very, T., Rivail, J.L., and Assfeld, X., A QM/MM study on the spinach plastocyanin: redox properties and absorption spectra, Comp. Theor. Chem., 2012, vol. 990, p. 119.
  40. Dell’Orto, E., Raimondo, L., Sassella, A., and Abbotto, A., Dye-sensitized solar cells: spectroscopic evaluation of dye loading on TiO2, J. Mater. Chem., 2012, vol. 22, p. 11364.
  41. Briand, J., Bräm, O., Réhault, J., Léonard, J., Cannizzo, A., Chergui, M., Zanirato, V., Olivucci, M., Helbing, J., and Haacke, S., Coherent ultrafast torsional motion and isomerization of a biomimetic dipolar photoswitch, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 3178.
  42. Ren, X.M., Feng, Q.Y., Zhou, G., Huang, C.H., and Wang, Z.S., Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar sells, J. Phys. Chem. C, 2010, vol. 114, p. 7190.