Platinum electrochemical corrosion and protection in concentrated alkali metal chloride solutions investigated by potentiodynamic nanogravimetry

P. V. Chulkin P. V. Chulkin , G. A. Ragoisha G. A. Ragoisha , E. A. Streltsov E. A. Streltsov
Российский электрохимический журнал
Abstract / Full Text

Platinum nanogravimetry potentiodynamic profiles in cyclic scans have shown significant dependence on alkali metal chloride concentration and effect of cations. Pt EQCM electrode mass drift in consecutive cyclic scans in 0.5 M LiCl, NaCl and CsCl was negative, similarly to the mass drift in aqueous solutions of H2SO4 with HCl additive, and this was due to electrochemical corrosion of platinum. The mass loss was prevented and inverted in 3 M solutions in the negative part of the scan, and the effect was attributed to shells of ion pairs firmly attached to the electrode surface via nonequilibrated Pt surface sites generated in the anodic scan. The increase in mass correlated with the increase in the Butterworth–van Dyke model resistance of quartz crystal resonator.

Author information
  • Chemistry Department, Belarusian State University, Minsk, 220030, Belarus

    P. V. Chulkin & E. A. Streltsov

  • Research Institute for Physical-Chemical Problems, Belarusian State University, Minsk, 220030, Belarus

    G. A. Ragoisha

  1. Frumkin, A.N. and Petry, O.A., Electrochim. Acta, 1970, vol. 15, p. 391.
  2. Frumkin, A.N., Trans. Faraday Soc., 1959, vol. 55, p. 156.
  3. Ukshe, E.A., Bukun, N.G., Leikis, D.I., and Frumkin, A.N., Electrochim. Acta, 1964, vol. 9, p. 431.
  4. Mitsushima, S., Koizumi, Y., Uzuka, S., and Ota, K.-I., Electrochim. Acta, 2008, vol. 54, p. 455.
  5. Yadav, A.P., Nishikata, A., and Tsuru, T., Electrochim. Acta, 2007, vol. 52, p. 7444.
  6. Wang, Z., Tada, E., and Nishikata, A., J. Electrochem. Soc., 2014, vol. 161, p. F845.
  7. Strmcnik, D., Kodama, K., van der Vliet, D., Greeley, J., Stamenkovic, V.R., and Markovic, N.M., Nature Chem., 2009, vol. 1, p. 466.
  8. Strmcnik, D., van der Vliet, D.F., Chang, K.-C., Komanicky, V., Kodama, K., You, H., Stamenkovic, V.R., and Markovic, N.M., J. Phys. Chem. Lett., 2011, vol. 2, p. 2733.
  9. Berkes, B.B., Inzelt, G., Schuhmann, W., and Bondarenko, A.S., J. Phys. Chem. C, 2012, vol. 116, p. 10995.
  10. Tymoczko, J., Colic, V., Ganassin, A., Schuhmann, W., and Bandarenka, A.S., Catalysis Today, 2015, vol. 244, p. 96.
  11. Rice, C.A., Urchaga, P., Pistono, A.O., McFerrin, B.W., McComb, B.T., and Hu, J., J. Electrochem. Soc., 2015, vol. 162, p. F1175
  12. Ragoisha, G.A., Osipovich, N.P., Bondarenko, A.S., Zhang, J., Kocha, S., and Iiyama, A., J. Solid State Electrochem., 2010, vol. 14, p. 531.
  13. Ragoisha, G.A., Auchynnikava, T.A., Streltsov, E.A., and Rabchynski, S.M., Electrochim. Acta, 2014, vol. 122, p. 218.
  14. Ragoisha, G.A., Electroanalysis, 2015, vol. 27, p. 855.
  15. Ragoisha G.A. and Bondarenko, A.S., Solid State Phenom., 2003, vol. 90–91, p. 103.
  16. QCM200 Operation and Service Manual, Stanford Research Systems, Sunnyvale, 2011.
  17. Conway, B.E., Progr. Surf. Sci., 1995, vol. 49, p. 331.
  18. Arruda, T.M., Shyam, B., Ziegelbauer, J.M., Mukerjee, S., and Ramaker, D.E., J. Phys. Chem. C., 2008, vol. 112, p. 18087.
  19. Waibel, H.-F., Kleinert, M., Kibler, L.A., and Kolb, D.M., Electrochim. Acta, 2002, vol. 47, p. 1461.
  20. Dona, E., Cordin, M., Deisl, C., Bertel, E., Franchini, C., Zucca, R., and Redinger, J., J. Am. Chem. Soc., 2009, vol. 131, p. 2827.
  21. Bittles, J.A. and Littauer, E.L., Corr. Sci., 1970, vol. 10, p. 29.