Статья
2017

Computational assisted electrochemical studies for 1,4-diazabicyclo[2,2,2]octane determination at multiwalled carbon nanotube paste electrode


Ebrahim Honarmand Ebrahim Honarmand , Hossein Mostaanzadeh Hossein Mostaanzadeh , Masoumeh Aalaiy Masoumeh Aalaiy
Российский электрохимический журнал
https://doi.org/10.1134/S102319351705010X
Abstract / Full Text

A multiwalled carbon nanotube-modified carbon paste electrode (MWCNT-PE) was used for determination of 1,4-diazabicyclo[2,2,2]octane (DABCO or TEDA) in 0.1 M phosphate buffer solutions (pH 10.25). Cyclic voltammetry(CV) and differential pulse voltammetry (DPV) techniques were used to investigate the electrocatalytic oxidation of DABCO at the surface of modified electrode. The results shown that the oxidation peak current of DABCO at the surface of MWCNT-PE was 2.40 times larger than that at the bare electrode. The experimental formal redox potential (E°') of DABCO was obtained 986 mV versus SHE (Standard Hydrogen Electrode). Density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the E°' values. The highest occupied molecular orbital (E HOMO), lowest unoccupied molecular orbital (E LUMO) and some thermodynamic parameters such as Gibbs free energy of DABCO and its oxidation forms were calculated. Both direct and indirect methods were used to calculate the theoretical standard electrode potential for DABCO and the results were found to be in good agreement with the experimental values.

Author information
  • Department of Chemistry, Faculty of science, University of Qom, Qom, 37161-46611, Iran

    Ebrahim Honarmand, Hossein Mostaanzadeh & Masoumeh Aalaiy

References
  1. Laus, G., Kahlenberg, V., Wurst, K., Lörting, T., and Schottenberger, H., Cryst. Eng. Commum., 2008, vol. 10, p. 1638.
  2. Farkas, A., Mills, G.A., Erner, W.E., and Maerker, J.B., J. Chem. Eng. Data, 1959, vol. 4, p. 334.
  3. Foote, C.S., On Quenching of Singlet Oxygen, New York: Academic Press, 1979, p. 139.
  4. Trebra, R.V. and Koch, T.H., Chem. Phys. Lett., 1982, vol. 93, p. 315.
  5. Pickett, J.L., Naderi, M., Chinn, M.J., and Brown, D.R., Separation Sci. Technol., 2002, vol. 37, p. 1079.
  6. Nelsen, S.F. and Hintz, P.J., J. Am. Chem. Soc., 1972, vol. 94, p. 7114.
  7. Beitollahi, H., Mazloum-Ardakani, M., Ganjipour, B., and Naeimi, H., Biosens. Bioelectron., 2008, vol. 24, p. 362.
  8. Wu, Y., Food. Chem., 2010, vol. 121, p. 580.
  9. Raoof, J.B., Ojani, R., Beitollahi, H., and Hossienzadeh, R., Electroanalysis, 2006, vol. 18, p. 1193.
  10. Portaccio, M., Tuoro, D., Arduini, F., Lepore, M., Mita, D.G., Diano, N., Mita, L., and Moscone, D., Biosens. Bioelectron., 2010, vol. 25, p. 2003.
  11. Haghighi, B., Hamidi, H., and Gorton, L., Electrochim. Acta, 2010, vol. 55, p. 4750.
  12. Behpour, M., Honarmand, E., and Ghoreishi, S.M., Bull. Korean Chem. Soc., 2010, vol. 31, p. 845.
  13. Behpour, M., Ghoreishi, S.M., and Honarmand, E., Int. J. Electrochem. Sci., 2010, vol. 5, p. 1922.
  14. Honarmand, E., Motaghedifard, M.H., and Ghamari, J., RSC Adv., 2014, vol. 4, p. 35511.
  15. Honarmand, E., Motaghedifard, M.H., and Amani, A.M., J. Adv. Med. Sci. Appl. Technol., 2015, vol. 1, p. 61.
  16. Frisch, M.J. et al., Gaussian 03, Revision C.02, Wallingford CT: Gaussian Inc., 2004.
  17. Gauss View, Version 3.0, Pittsburgh, PA: Gaussian Inc., 2003.
  18. Barone, V. and Cossi, M., J. Phys. Chem. A, 1998, vol. 102, p. 1995.
  19. Bratsch, S.G., J. Phys. Chem. Ref. Data, 1989, vol. 18, p. 1.
  20. Brett, C.M.A. and Oliveira-Brett, A.M., Electrochemistry: Principles, Methods, and Applications, Oxford: Oxford University Press, 1993.
  21. Quintana, M.C., Blanco, M.H., Lacal, J., and Hermández, L., Talanta, 2003, vol. 59, p. 417.
  22. Zi-Rong, Z., Dennis, H.E., and Stephen, F.N., J. Org. Chem., 2000, vol. 65, p. 1793.
  23. Bartmess, J.E., J. Phys. Chem., 1994, vol. 98, p. 6420.
  24. Lim, C., Bashford, D., and Karplus, M., J. Phys. Chem., 1991, vol. 95, p. 5610.
  25. Reiss, H. and Heller, A., J. Phys. Chem., 1985, vol. 89, p. 4207.
  26. Marcus, Y., Ion Solvation, John Wiley and Sons Ltd., 1985, p. 105.
  27. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, p. 63.