Examples



mdbootstrap.com



 
Статья
2022

Electrochemical Catalytic Reduction of p-Nitrotoluene on the Surface of α-Ag2S Crystal


Y. Z. SongY. Z. Song, J. WangJ. Wang, M. T. LiM. T. Li, Wen XieWen Xie
Российский журнал физической химии А
https://doi.org/10.1134/S003602442204029X
Abstract / Full Text

α-Ag2S crystals are synthesized using thioacetamide and silver nitrate using hydrothermal method, and the crystals are characterized by scanning electron microscopy, energy dispersive spectrometer, AC impedance spectrum and X-ray diffractometer. Electrochemical reduction of p-nitrotoluene at α-Ag2S crystal modified glassy carbon electrode is investigated, and the results indicating that the α-Ag2S can catalyze the reduction of p-nitrotoluene, and the reduction mechanism of p-nitrotoluene is also discussed.

Author information
  • Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, 223300, Huai An, ChinaY. Z. Song, J. Wang & M. T. Li
  • Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, 430071, Wuhan, ChinaWen Xie
References
  1. W. J. Mir, A. Swarnkar, R. Sharma, A. Katti, K. V. Adarsh, and Angshuman Nag, J. Phys. Chem. Lett. 6, 3915 (2015).
  2. P. Peng and B. Sadtler, J. Phys. Chem. C 114, 5879 (2010).
  3. Y. Badali, Y. Azizian-Kalandargh, E. A. Akhlaghi, and S. Altindal, J. Electron. Mater. 49, 444 (2020).
  4. H. Roshan, F. Ravanan, M. H. Sheikhi, and A. Mirzaei, J. Alloys Compd. 852, 156948 (2021).
  5. T. Kosmala, D. Mosconi, G. Giallongo, G. A. Rizzi, and G. Granozzi, ACS Sustainable Chem. Eng. 6, 7818 (2018).
  6. Y. Inagawa, T. Isobe, A. Nakajima, and S. Matsushita, J. Phys. Chem. C 123, 12135 (2019).
  7. W. Hao, H. Si, W. Li, C. Zhang, W. Zhu, and X. Qiu, Solid State Ionics 343, 115071 (2019).
  8. A. P. Yadav and R. R. Pradhananga, J. Nepal Chem. Soc. 15, 19 (1996).
  9. P. Simonnin, M. Sassi, B. Gilbert, L. Charlet, and K. M. Rosso, J. Phys. Chem. Lett. 5, 732 (2014).
  10. R. G. Cope and H. J. Oldsmid, Br. J. Appl. Phys. 16, 501 (1965).
  11. H. Gao, J. Zhang, Y. Liu, W. Tu, T. Wei, and Z. Dai, Anal. Chem. 91, 12038 (2019).
  12. L. Lv and H. Wang, Mater. Lett. 121, 105 (2014).
  13. R. A. Ismail, A.-M. E. Al-Samarai, and F. M. Ahmed, Surf. Interfaces 21, 100753 (2020).
  14. M. Chen and L. Gao, Surf. Interfaces 21, 100753 (2020).
  15. A. M. Holi, Z.ZainaL, A. K. Ayal, S.-K. Chang, H. N. Lim, Z. A. Talib, and C.-C. Yap, Optik - Int. J. Light Electron Opt. 184, 473 (2019).
  16. K. Xu, Z. Liu, S. Qi, Z. Yin, S. Deng, M. Zhang, and Z. Sun, Appl. Surf. Sci. 538, 148044 (2021).
  17. Z. Zhang, Z. Xing, K. Wang, T. Cheng, Zhenzi Li, and W. Zhou, Chemosphere 271, 129500 (2021).
  18. Y. Yang, W. Zhang, Y. Xu, H. Sun, and X. Wang, Appl. Surf. Sci. 494, 841 (2019).
  19. A. M. Holi, Z. Zainal, A. K. Ayal, S.-K. Chang, H. N. Lim, Z. A. Talib, and C.-C. Yap, Optik 184, 473 (2019).
  20. X. Wen, S. Wang, Y. Xie, X.-Y. Li, and S. Yang, J. Phys. Chem. B 109, 10100 (2005).
  21. M. A. Ehsan, H. Khaledi, A. A. Tahir, H. N. Ming, K. G. U. Wijayantha, and M. Mazhar, Thin Solid Films 51, 124 (2013)
  22. T. Ben Nasrallah, H. Dlala, M. Amlouk, S. Belgacem, and J. C. Bernède, Synth. Met. 151, 225 (2005).
  23. H. Wang, G. Li, and A. Fakhri, J. Photochem. Photobiol. B 207, 111882 (2020).
  24. B. Xue, H.-Y. Jiang, T. Sun, F. Mao, C.-C. Ma, and J.‑K. Wu, J. Photochem. Photobiol. A 353, 557 (2018).
  25. M. Kristl, S. Gyergyek, and J. Kristl, Mater. Express 5, 359 (2015).
  26. R. G. Chaudhuri and S. Paria, J. Colloid Interface Sci. 369, 117 (2012).
  27. H. M. Pathan, P. V. Salunke, B. R. Sankpal, and C. D. Lokhande, Mater. Chem. Phys. 72, 105 (2011).
  28. J. E. Kim, S. Choi, M. Balamurugan, J. H. Jang, and K. T. Nam, Trends Chem. 2, 1004 (2020).
  29. S. Zheng, J. Yan, and K. Wang, Engineering (in press). https://doi.org/10.1016/j.eng.2020.06.025
  30. S. Rani, N. Dilbaghi, S. Kumar, R. S. Varma, and R. Malhotra, Inorg. Chem. Commun. 120, 108157 (2020).
  31. S. Yuan, X. Bo, and L. Guo, Anal. Chim. Acta 1024, 73 (2018).
  32. B. Wang, Y. Wu, B. Jiang, H. Song, W. Li, Y. Jiang, C. Wang, L. Sun, Q. Li, and A. Li, Electrochim. Acta 219, 509 (2016).
  33. L. J. Núñez-Vergara, M. Bonta, P. A. Navarrete-Encina, and J. A. Squella, Electrochim. Acta 46, 4289 (2001).
  34. M. Kolar, T. Oražem, V. Jovanovski, and S. B. Hočevar, Sens. Actuators, B 330, 129338 (2021).
  35. G. M. Neelgund and A. Oki, Appl. Catal. B 110, 99 (2011).
  36. Analytical Chemistry (Centr. China Normal Univ. Press, Wuhan, China, 2011).
  37. S. E. Barrowss, C. J. Cramer, and D. G. Truhlard, Environ. Sci. Technol. 30, 3028 (1996).
  38. K. Ahmad, A. Mohammad, and S. M. Mobin, Electrochim. Acta 252, 549 (2017).