Examples



mdbootstrap.com



 
Статья
2021

Catalyst-Controlled Stereoselective Construction of Indole-Fused Heterocycles through Cycloadditions of Indolyl-Allenes: A Theoretical Investigation


Hong RenHong Ren
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421130197
Abstract / Full Text

The mechanisms and stereoselectivity of Pt- and Au-catalyzed cycloaddition of N-(2-(1H-indol-1-yl)-ethyl)-N-(4-cyclopropyl-2-methylbuta-2,3-dien-1-yl)-4-methylbenzenesulfonamide have been theoretically investigated with the aid of density functional theory (DFT) calculations. Our results reveal that the rate- and stereoselectivity-determining step are both the tandem cyclization. The stereoselectivity observed in the experiment could be interpreted through our calculations. The steric and electronic properties of the cyclopropyl group account for the stereoselectivity.

Author information
  • Information Management Center, Jining University, 273155, Qufu, Shandong Province, ChinaHong Ren
  • School of Chemistry and Chemical Engineering, Qufu Normal University, 273165, Qufu, Shandong Province, ChinaHong Ren
References
  1. D. A. Klumpp, K. Y. Yeung, G. K. S. Prakash, and G. A. Olah, J. Org. Chem. 63, 4481 (1998).
  2. B. M. Trost, N. Cramer, and H. Bernsmann, J. Am. Chem. Soc. 129, 3086 (2007).
  3. M. Bandini and A. Eichholzer, Angew. Chem., Int. Ed. 48, 9608 (2009).
  4. G. Bartoli, G. Bencivenni, and R. Dalpozzo, Chem. Soc. Rev. 39, 4449 (2010).
  5. S. W. Duan, Y. Li, Y. Y. Liu, Y. Q. Zou, D. Q. Shi, and W. J. Xiao, Chem. Commun. 48, 5160 (2012).
  6. R. Dalpozzo and G. Bartoli, Chem. Soc. Rev. 41, 7247 (2012).
  7. G. S. Singh and Z. Y. Desta, Chem. Rev. 112, 6104 (2012).
  8. F. Y. Zhao, B. Z. Xu, D. C. Ren, L. L. Ham, Z. Y. Yu, and T. Liu, Organometallics 37, 1026 (2018).
  9. C. Fricke, A. Dahiya, W. B. Reid, and F. Schoenebeck, ACS Catal. 9, 9231 (2019).
  10. T. Fan, X. H. Chen, J. W. Sun, and Z. Y. Lin, Organometallics 31, 4221 (2012).
  11. G. P. Huang, K. L. Xie, D. Lee, and Y. Z. Xia, Org. Lett. 14, 3850 (2012).
  12. Z. F. Li, Y. Z. Fan, N. J. DeYonker, et al., J. Org. Chem. 77, 6076 (2012).
  13. A. Ghosh, A. Basak, K. Chakrabarty, S. Mondal, A. Chatterjee, and G. K. Das, ACS Omega 3, 1159 (2018).
  14. A. Buzas and F. Gagosz, J. Am. Chem. Soc. 128, 12614 (2006).
  15. G. Zhang, V. J. Catalano, and L. Zhang, J. Am. Chem. Soc. 129, 11358 (2007).
  16. L. Y. Mei, Y. Wei, X. Y. Tang, and M. Shi, J. Am. Chem. Soc. 137, 8131 (2015).
  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford CT, 2009).
  18. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
  19. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994).
  20. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).
  21. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).
  22. W. R. Wadt and P. J. Hay, J. Chem. Phys. 82, 284 (1985).
  23. K. J. Fukui, Acc. Chem. Res. 14, 363 (1981).
  24. Y. Zhao and D. G. Truhlar, Chem. Acc. 120, 215 (2008).
  25. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).
  26. A. V. Marenich, C. J. Cramer, and D. G. Truhlar, J. Phys. Chem. B 113, 6378 (2009).
  27. J. Zhang, C.H Shan, T. Zhang, J. S. Song, T. Liu, and Y. Lan, Coord. Chem. Rev. 382, 69 (2019).
  28. J. Zhang, C. H. Shan, K. Lv, L. Zhu, Y. Y. Li, T. Liu, and Y. Lan, ChemCatChem 11, 1228 (2019).
  29. K. Lv, Y. Y. Jiang, L. L. Han, T. Liu, and S. W. Bi, Mol. Catal. 462, 77 (2019).
  30. L. L. Han, X. Y. Ma, Y. X. Liu, Z. Y. Yu, and T. Liu, Org. Chem. Front. 5, 725 (2018).
  31. L. L. Han, Y. P. Li, and T. Liu, Dalton Trans. 47, 150 (2018).