Статья
2021

Quantum-Chemical Simulation of the Adsorption of OH Ions on Au(111)


N. A. Rogozhnikov N. A. Rogozhnikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521010080
Abstract / Full Text

Based on the cluster model of the metal surface, the OH ion interaction with the gold surface is studied by the density functional method. The geometrical and energy characteristics of this interaction are assessed. The adsorption of the OH ion in its “bridge” position with the angle of 117° between the normal to the surface and the O–H bond is the most advantageous as regards energy. When adsorbed, the ion loses about half of its charge. The involvement of the adsorbed OH ion and gold atoms the nearest to it in the formation of molecular orbitals of this system is assessed. The contribution to their formation is made preferentially by the p orbitals of the oxygen atom and the d orbitals of gold.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128, Novosibirsk, Russia

    N. A. Rogozhnikov

  • Novosibirsk State Technical University, 630073, Novosibirsk, Russia

    N. A. Rogozhnikov

References
  1. Kirk, D.W., Foulkes, F.R., and Graydon, W.F., The electrochemical formation of Au(I) hydroxide on gold in aqueous potassium hydroxide, J. Electrochem. Soc., 1980, vol. 127, p. 1069.
  2. Horányi, G. and Rizmayer, E.M., Indirect radiotracer study of the electrosorption of OH ions and the formation of the oxide layer on gold electrodes: A study of the induced adsorption of labelled Ca2+ ions, J. Electroanal. Chem., 1984, vol. 165, p. 279.
  3. Štrbac, S. and Adžić, R.R., The influence of OH chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions, J. Electroanal. Chem., 1996, vol. 403, p. 169.
  4. Perkins, R.S., Livingston, R.C., Andersen, T.N., and Eyring, H., Voltage transients of freshly produced noble metal electrode surfaces, J. Phys. Chem., 1965, vol. 69, p. 3329.
  5. Bode, D.D., Jr., Andersen, T.N., and Eyring, H., Anion and pH effects on the potentials of zero charge of gold and silver electrodes, J. Phys. Chem., 1967, vol. 71, p. 792.
  6. Bek, R.Yu., Makhnyr’, N.V., and Zelinskii, A.G., Capacitance of electric double-layer at a recoverable gold electrode, Sov. Electrochem., 1975, vol. 11, p. 1503.
  7. Chen, A. and Lipkowski, J., Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode, J. Phys. Chem. B, 1999, vol. 103, p. 682.
  8. Zhichao, S. and Lipkowski, J., Chloride adsorption at the Au(111) electrode surface, J. Electroanal. Chem., 1996, vol. 403, p. 225.
  9. Zhichao, S., Lipkowski, J., Chen, A., Pettinger, B., and Bilger, C., Ionic adsorption at the Au(111) electrode, Electrochim. Acta, 1998, vol. 43, p. 2875.
  10. Liu, R., Shen, W., Zhang, J., and Li, M., Adsorption and dissociation of ammonia on Au(111) surface: A density functional theory study, Appl. Surf. Sci., 2008, vol. 254, p. 5706.
  11. Koverga, A.A., Frank, S., and Koper, M.T.M., Density functional theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces, Electrochim. Acta, 2013, vol. 101, p. 244.
  12. Liu, R., Adsorption and dissociation of H2O on Au(111) surface: A DFT study, Comput. Theor. Chem., 2013, vol. 1019, p. 141.
  13. Pessoa, A.M., Fajín, J.L.C., Gomes, J.R.B., and Cordeiro, M.N.D.S., Cluster and periodic DFT calculation of adsorption of hydroxyl on the Au(hkl) surfaces, J. Mol. Struct.: THEOCHEM, 2010, vol. 946, p. 43.
  14. Santiago-Rodríguez, Y., Herron, J.A., Curet-Arana, M.C., and Mavrikakis, M., Atomic and molecular adsorption on Au(111), Surf. Sci., 2014, vol. 627, p. 57.
  15. Liu, S., Ishimoto, T., and Koyama, M., First-principles calculation of OH/OH adsorption on gold nanoparticles, Int. J. Quantum Chem., 2015, vol. 115, p. 1597.
  16. Pessoa, A.M., Fajín, J.L.C., Gomes, J.R.B., and Cordeiro, M.N.D.S., Ionic and radical adsorption on the Au(hkl) surfaces: A DFT study, Surf. Sci., 2012, vol. 606, p. 69.
  17. Shen, K., Jia, C., Cao, B., Xu, H., Wang, J., Zhang, L., Kim, K., and Wang, W., Comparison of catalytic activity between Au(110) and Au(111) for the electro-oxidation of methanol and formic acid: Experiment and density functional theory calculation, Electrochim. Acta, 2017, vol. 256, p. 129.
  18. Nechaev, I.V. and Vvedenskii, A.V., Quantum chemical modeling of hydroxide ion adsorption on group 1B metals from aqueous solutions, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, p. 391.
  19. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 1993, vol. 14, p. 1347.
  20. Neese, F., The ORCA program system, WIREs Comput. Mol. Sci., 2012, vol. 2, p. 73.
  21. Koch, W. and Holthausen, M.C., A Chemist’s Guide to Density Functional Theory, Weinheim: Wiley-VCH, 2001. 293 p.
  22. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, vol. 98, p. 5648.
  23. Stephens, P.J, Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, p. 11623.
  24. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi, J. Chem. Phys., 1985, vol. 82, p. 284.
  25. Hay, P.J. and Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals, J. Chem. Phys., 1985, vol. 82. p. 299.
  26. McLean, A.D. and Chandler, G.S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18, J. Chem. Phys., 1980, vol. 72, p. 5639.
  27. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 1980, vol. 72, p. 650.
  28. Löwdin, P.-O., On the nonorthogonality problem, Adv. Quantum Chem., 1970, vol. 5, p. 185.
  29. Weinhold, F., Natural bond orbital method, in Encyclopedia of Computational Chemistry, Schleyer, P.v.R., Allinger, N.L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer, H.F., and Schreiner, P.R., Eds, Chichester: Willey, 1998. vol. 3, p. 1792.
  30. Glendening, E.D., Landis, C.R., and Weinhold, F., Natural bond orbital methods, WIREs Comput. Mol. Sci., 2012, vol. 2, p. 1.
  31. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999, pp. 4.8, 4.24, 4.28.
  32. Titmuss, S., Wander, A., and King, D.A., Reconstruction of clean and adsorbate-covered metal surfaces, Chem. Rev., 1996, vol. 96, p. 1291.
  33. Rogozhnikov, N.A., A quantum-chemical study of the adsorption of Pb atoms on Au(111), Prot. Met. Phys. Chem. Surf., 2018, vol. 54. p. 161.
  34. Rogozhnikov, N.A., Quantum-chemical study of the adsorption of Pb2+ on Au(111), Russ. J. Electrochem., 2018, vol. 54, p. 902.
  35. Greenwood, N.N. and Earnshow, A., Chemistry of Elements, Oxford: Butterworth-Heinemann, 1998. pp. 1176, 624.
  36. Barone, V., Cossi, M., and Tomasi, J., A new definition of cavities for the computation of solvation free energies by the polarizable continuum model, J. Chem. Phys., 1997, vol. 107, p. 3210.
  37. Cossi, M., Rega, N., Scalmani, G., and Barone, V., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comp. Chem., 2003, vol. 24, p. 669.
  38. Boys, S.F. and Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys., 1970, vol. 19, p. 553.
  39. Jensen, F., Introduction to Computational Chemistry, Chichester: Wiley, 2007, 227 p.
  40. Rosenbaum, N.H., Owrutsky. J.C., Tack, L.M., and Saykally, R.J., Velocity modulation laser spectroscopy of negative ions: The infrared spectrum of hydroxide (OH), J. Chem. Phys., 1986, vol. 84, p. 5308.
  41. Symons, M.C.R., The hydronium ion (H3O+), pyramidal or planar?, J. Am. Chem. Soc., 1980, vol. 102, p. 3982.
  42. Rodwell, W.R. and Radom, L., Definitive theoretical evidence for the nonplanarity of the hydronium ion (H3O+), J. Am. Chem. Soc., 1981, vol. 103, p. 2865.
  43. Sobolewski, A.L. and Domcke, W., Ab initio investigation of the structure and spectroscopy of hydronium-water clusters, J. Phys. Chem. A, vol. 106, p. 4166.
  44. Brooker, J., Christensen, P.A., Hamnett, A., and He, R., Combined scanning tunnelling microscopy and in situ fourier-transform infrared study of dioxygen reduction on gold, Faraday Discuss., 1992, vol. 94, p. 339.
  45. Schleyer, P. v. R., Encyclopedia of Computational Chemistry, Chichester: Willey, 1998. vol. 1, p. 700.
  46. O’Boyle, N.M., Tenderholt, A.L., and Langner, K., Software news and updates cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 2008, vol. 29, p. 839.
  47. Chambers, C.C., Hawkins, G.D., Cramer, C.J., and Truhlar, D.C., Model for aqueous solvation based on class IV atomic charges and first solvation shell effects, J. Phys. Chem., 1996, vol. 100, p. 16385.
  48. Da Silva, E.F., Svendsen, H.F., and Merz, K.M., Explicitly representing the solvation shell in continuum solvent calculations, J. Phys. Chem. A, 2009, vol. 113, p. 6404.
  49. Desnoyers, J.E. and Jolicoeur, C., Hydratation effects and thermodynamic properties of ions, in Modern Aspects of Electrochemistry, Bockris, J.O’M. and Conway, B.E., Eds., New York: Plenum, 1969, vol. 5, p. 26.
  50. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, London: Butterworth, 1959. p. 125.
  51. Marcus, Y., Thermodynamics of solvation of ions. Part 5. Gibbs free energy of hydration at 298.15 K, J. Chem. Soc. Trans. Farad., 1991, vol. 87, p. 2995.
  52. Bondi, A., Van der Waals volumes and radii, J. Phys. Chem., 1964, vol. 68, p. 441.