Effect of Perchloric Acid on Proton-Conducting Properties of Sulfonated Calix[4]Arene

L. V. Shmygleva L. V. Shmygleva , R. R. Kayumov R. R. Kayumov , A. I. Karelin A. I. Karelin , Yu. A. Dobrovol’skii Yu. A. Dobrovol’skii
Российский электрохимический журнал
Abstract / Full Text

Calix[4]arenesulfonic acid complexation with perchloric acid is studied. The stoichiometric composition of the complex is shown to be calix[4]arene/HClO4 = 1/1. The complex is most stable against humidity changes as far as its proton-conducting properties are concerned. Its specific proton conductivity varies from 3 × 10–3 to 5 × 10–2 S/cm; the conductivity activation energy is 0.16 ± 0.04 eV. The studying of the effect of HClO4 amount on the samples’ physico-chemical properties at low humidity showed the proton transfer in the material to be determined by the crystallites’ bulk, rather than surface, characteristics.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, pr. akad. Semenova 1, Chernogolovka, Moscow oblast, 142432, Russia

    L. V. Shmygleva, R. R. Kayumov, A. I. Karelin & Yu. A. Dobrovol’skii

  1. Shmygleva, L.V., Pisareva, A.V., Pisarev, R.V., Ukshe, A.E., and Dobrovol’skii, Yu.A., Proton conductivity of calix[4]arene-para-sulfonic acids, Rus. J. Electrochem., 2013, vol. 49, no. 8, p.801.
  2. Shmygleva, L.V., Sanginov, E.A., Kayumov, R.R., Ukshe, A.E., and Dobrovol’skii, Yu.A., Effect of the structure of calix[4]arene-para-sulfonic acid on its transport, Russ. J. Electrochem., 2015, vol. 51, no. 5, p.468.
  3. Pisareva, A.V., Pisarev, R.V., Karelin, A.I., Shmygleva, L.V., Antipin, I.S., Konovalov, A.I., Solovieva, S.E., Dobrovolsky, Yu.A., and Aldoshin, S.M., Proton conductivity of calix[n]arene-para-sulfonic acids (n = 4, 8), Russ Chem. Bull., 2012, vol. 1, no. 10, p. 1892
  4. Hardie, M.J., Makha, M., and Raston, C.L., Confinement of dimeric sulfuric acid in a self-assembled molecular capsule: [(H2SO4)2⊂(calix[5]arenesulfonic acid)2], Chem. Commun., 1999, vol. 23, no. 23, p. 2409.
  5. Daze, K.D., Jones, C.E., Lilgert, B.J., Beshara, C.S., and Hof, F., Determining the effects of salt, buffer, and temperature on the complexation of methylated ammonium ions and methyllysines by sulfonated calixarenes, Can. J. Chem., 2013, vol. 91, no. 11, p. 1072.
  6. Guo, D.-Sh. and Liu, Y., Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications, Acc. Chem. Res., 2014, vol. 47, p. 1925.
  7. Atwood, J.L., Barbour, L.J., and Jerga, A., A new type of material for the recovery of hydrogen from gas mixtures, Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 2948.
  8. Leonova, L., Shmygleva, L., Ukshe, A., Levchenko, A., Chub, A., and Dobrovolsky, Yu., Solid-state hydrogen sensors based on calixarene-12-phosphatotungstic acid composite electrolytes, Sen. Actuators, 2016, vol. 230 P, p.470.
  9. Scharff, J.-P. and Mahjoubi, M., Synthesis and acidbase properties of calix[4], calix[6] and calix[8]arene-p-sulfonic acids, New J. Chem., 1991, vol. 15, p.883.
  10. Grafov, B.M. and Ukshe, E.A., Elektrokhimicheskie tsepi peremennogo toka (Electrochemical ac Circuits), Moscow: Nauka, 1973.
  11. Bukun, N.G. and Ukshe, A.E., Impedance of solid electrolyte systems, Russ. J. Electrochem., 2009, vol. 45, no. 1, p.11.
  12. Karelin, A.I., Grigorovich, Z.I., and Rosolovskii, V.Ya., Vibrational spectra of perchloric acid. I. Gaseous and liquid HClO4 and DClO4, Spectrochim. Acta A, 1975, vol. 31, p.765.
  13. Furer, V.L., Borisoglebskaya, E.I., and Kovalenko, V.I., Band intensity in the IR spectra and conformations of calix[4]arene and thiacalix[4]arene, Spectrochim. Acta A, 2005, vol. 61, p. 355.