Статья
2017

Sensitive determination of bisphenol A based on Ag nanoparticles/polyguanine modified electrode


Hong-Ying Li Hong-Ying Li , Xue-Liang Wang Xue-Liang Wang , Zhao-Xia Wang Zhao-Xia Wang , Wei Jiang Wei Jiang
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517020100
Abstract / Full Text

A quantitative method for detection of bisphenol A (BPA) was set up based on a glassy carbon electrode (GCE) modified with Ag nanoparticles and polyguanine (Ag-PGA). Under the optimum conditions, this modified electrode could remarkably enhance the electrochemical oxidation peak current of BPA, which made this method had wider linear range from 1.0 × 10–8 to 1.0 × 10–4 M, and lower limit of detection of 1.0 × 10–9 M (S/N=3). Moreover, this method has been successfully applied for the determination of BPA in real samples with satisfactory recovery.

Author information
  • School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250010, P. R. China

    Xue-Liang Wang & Wei Jiang

  • Department of Chemistry and Chemical Engineering, Heze University, Heze, 274015, P. R. China

    Hong-Ying Li, Xue-Liang Wang & Zhao-Xia Wang

References
  1. Vandenberg, L.N., Hauser, R., Marcus, M., Olea, N., and Welshons, W.V., Reprod. Toxicol., 2007, vol. 24, p. 139.
  2. Akingbemi, B.T., Sottas, C.M., Koulova, A.I., Klinefelter, G.R., and Hardy, M.P., Endocrinology, 2004, vol. 145, p. 592.
  3. Lang, I.A., Galloway, T.S., Scarlett, A., Henley, W.E., Depledge, M., Wallace R.B., and Melzer, D., J. Am. Med. Assoc., 2008, vol. 300, p. 303.
  4. Steinmetz, R., Mitchner, N.A., Grant, A., Allen, D.L., Bigsby, R.M., and Ben-Jonathan, N., Endocrinology, 1998, vol. 139, p. 2741.
  5. Wen, Y., Zhou, B.S., Xu, Y., Jin, S.W., and Feng, Y.Q., J. Chromatogr. A, 2006, vol. 1133, p. 21.
  6. Wang, X., Zeng, H., Zhao, L., and Lin, J., Anal. Chim. Acta, 2006, vol. 556, p. 313.
  7. Braunrath, R., Podlipna, D., Padlesak, S., and Cichna-Markl, M., J. Agric. Food Chem., 2011, vol. 59, p. 7178.
  8. Shin, H., Park, C., Park, S., and Pyo, H., J. Chromatogr. A, 2001, vol. 912, p. 119.
  9. Gatidou, G., Thomaidis, N.S., Stasinakis, A.S., and Lekkas, T.D., J. Chromatogr. A, 2007, vol. 1138, p. 32.
  10. Yonekubo, J., Hayakawa, K., and Sajiki, J., J. Agric. Food Chem., 2008, vol. 56, p. 2041.
  11. Zhao, M.P., Li, Y.Z., Guo, Z.Q., Zhang, X.X., and Chang, W.B., Talanta, 2002, vol. 57, p. 1205.
  12. Royo, B., Sosna, M., Asensio, A.C., Moran, J.F., and Ferapontova, E.E., J. Electroanal. Chem., 2013, vol. 704, p. 67.
  13. Janssen, L.J.J. and Koene, L., Chem. Eng. J., 2002, vol. 85, p. 137.
  14. Ottewill, G.A., Reade, G.W., Campbell, S.A., de Leon, C.P., and Walsh, F.C., J. Environ. Monit., 2005, vol. 7, p. 943.
  15. Yu, C.M., Gou, L.L., Zhou, X.H., Bao, N., and Gu, H.Y., Electrochim. Acta, 2011, vol. 56, p. 9056.
  16. Zhang, Y.X., Cheng, Y.X., Zhou, Y.Y., Li, B.Y., Gu, W., Shi, X.H., and Xian, Y.Z., Talanta, 2013, vol. 107, p. 211.
  17. Yin, H.S., Zhou, Y.L., and Ai, S.Y., J. Electroanal. Chem., 2009, vol. 626, p. 80.
  18. Chauke, V., Matemadombo, F., and Nyokong, T., J. Hazard Mater., 2010, vol. 178, p. 180.
  19. Niu, X.L., Yang, W., Wang, G.Y., Ren, J., Guo, H., and Gao, J.Z., Electrochim. Acta, 2013, vol. 98, p. 167.
  20. Wang, Q.X., Wang, Y.H., Liu, S.Y., Wang, L.H., Gao, F., Gao, F., and Sun, W., Thin Solid Films, 2012, vol. 520, p. 4459.
  21. Li, Y.G., Gao, Y., Cao, Y., and Li, H.M., Sens. Actuators B, 2012, vol. 171–172, p. 726.
  22. Wu, S., Zhao, H.T., Ju, H.X., Shi, C.G., and Zhao, J.W., Electrochem. Commun., 2006, vol. 8, p. 1197.
  23. Cui, K., Song, Y.H., Yao, Y., Huang, Z.Z., and Wang, L., Electrochem. Commun., 2008, vol. 10, p. 663.
  24. Liang, F., Liu, B.Z., Deng, Y.H., Yang, S.G., and Sun, C., Microchim. Acta, 2011, vol. 174, p. 407.
  25. Li, H.Y., Wang, X.L., and Yu, Z.Y., J. Solid State Electrochem., 2014, vol. 18, p. 105.
  26. Chen, L.F., Xie, H.Q., and Li, J., J. Solid State Electrochem., 2012, vol. 16, p. 3323.
  27. Nada, F.A. and Maher, F.E., Sens. Actuators B, 2010, vol. 145, p. 299.
  28. Joseph, W., Anal. Chim. Acta, 2002, vol. 469, p. 63.
  29. Li, H.Y. and Wang, X.L., Electrochemistry, 2015, vol. 83, p. 434.
  30. Yang, S.L., Li, G., Zhao, J.H., Zhu, H.M., and Qu, L.B., J. Electroanal. Chem., 2014, vol. 717–718, p. 225.
  31. Yin, H.S., Zhou, Y.L., Cui, L., Liu, X.G., Ai, S.Y., and Zhu, L.S., J. Solid State Electrochem., 2011, vol. 15, p. 167.
  32. Laviron, E., J. Electroanal. Chem., 1974, vol. 52, p. 355.
  33. Adams, R., Electrochemistry at Solid Electrodes, New York: M. Dekker, 1969.
  34. Anson, F., Anal. Chem., 1964, vol. 36, p. 932.
  35. Yin, H.S., Cui, L., Ai, S.Y., Fan, H., and Zhu, L.S., Electrochim. Acta, 2010, vol. 55, p. 603.
  36. Yin, H.S., Zhou, Y.L., Ai, S.Y., Han, R.X., Tang, T.T., and Zhu, L.S., Microchim Acta, 2010, vol. 170, p. 99.
  37. Velasco, J.G., Electroanalysis, 1997, vol. 9, p. 880.
  38. Yadegari, H., Jabbari, A., Heli, H., Moosavi-Movahedi, A., Karimian, K., and Khodadadi, A., Electrochim. Acta, 2008, vol. 53, p. 2907.
  39. Majdi, S., Jabbari, A., Heli, H., Yadegari, H., Moosavi-Movahedi, A., and Haghgoo, S., J. Solid State Electrochem., 2009, vol. 13, p. 407.
  40. Yin, H.S., Cui, L., Chen, Q.P., Shi, W.J., Ai, S.Y., Zhu, L.S., and Lu, L.A., Food Chem., 2011, vol. 125, p. 1097.
  41. Sun, P.Y. and Wu, Y.H., Sens. Actuators B, 2013, vol. 178, p. 113.
  42. Zhang, Y., Wang, L.T., Lu, D.B., Shi, X.Z., Wang, C.M., and Duan, X.J., Electrochim. Acta, 2012, vol. 80, p. 77.
  43. Pereira, G.F., Andrade, L.S., Rocha-Filho, R.C., and Bocchi, N., Electrochim Acta, 2012, vol. 82, p. 3.