Examples



mdbootstrap.com



 
Статья
2021

Study on UV Spectrum and Antioxidant Properties of 3-tert-Butyl-4-hydroxyanisole Molecule


 Bin Shi Bin Shi, Jiancheng YuJiancheng Yu, Tianyu TangTianyu Tang, Li YuanLi Yuan, Yanlin TangYanlin Tang
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421020230
Abstract / Full Text

Based on DFT, B3LYP method was used to optimize the structure of 3-tert-butyl-4-hydroxyanisole (BHA) molecule at the level of 6-311g(d,p) set level. On this basis, the first 50 excited states were calculated by using B3LYP/def 2-TZVP method based on TD-DFT with ethanol as solvent. Multiwfn 3.6 software was used to plot the UV spectrum, and three methods including atomic charges, Fukui function (FF) and electrostatic potential (ESP) were used to predict its electrophilic reactive sites. Finally, bond energy of O10–H11 and C12–O13 were investigated by the ωB97XD/TZVP method. Comparing the experimental and theoretical UV spectra, it was found that the overall agreement was good. The oxygen atom on the phenolic hydroxyl group and the oxygen atom on the ether bond are the electrophilic reactive sites. And the C12–O13 bond on the ether bond is more prone to dissociation. They are easily reacted with peroxide radicals to have oxidation resistance.

Author information
  • School of Physics, Guizhou University, 550025, Guiyang, China Bin Shi, Jiancheng Yu, Tianyu Tang, Li Yuan & Yanlin Tang
References
  1. F. Shahidi, Die Nahrung 44, 158 (2000).
  2. A. L. Dawidowicz, M. Olszowy, and M. Jozwik-Doleba, J. Food Process. Preserv. 39, 2240 (2015).
  3. Z. D. Sun, X. X. Yang, Q. S. Liu, C. H. Li, Q. F. Zhou, H. Fiedler, C. Y. Liao, J. Q. Zhang, and G. B. Jiang, J. Hazard. Mater. 379, 120794 (2019).
  4. L. Q. Liu, Q. Q. Yu, Y. Liu, and R. T. Dai, Meat Res. 31, 45 (2017).
  5. S. G. Gorji, M. Calingacion, H. E. Smyth, and M. Fitzgerald, J. Food Sci. Technol. 56, 4076 (2019).
  6. M. H. Lu, H. Y. Lei, Z. J. Wang, and J. Zhang, Spectrosc. Spectr. Anal. 37, 2087 (2017).
  7. C. Alasalvar, A. Guder, H. Gokce, C. A. Kastas, and R. C. Celik, J. Mol. Struct. 1133, 37 (2017).
  8. R. Guitard, V. Nardello-Rataj, and J. M. Aubry, Int. J. Mol. Sci. 17, 1220 (2016).
  9. C. J. Brala, I. Fabijanic, A. K. Markovic, and V. Pilepic, Comput. Theor. Chem. 1049, 1 (2014).
  10. R. D. Vargas-Sanchez, A. M. Mendoza-Wilson, G. R. Torrescano-Urrutia, and A. Sanchez-Escalante, Comput. Theor. Chem. 1066, 7 (2015).
  11. G. Arhin, A. H. Adams, E. Opoku, R. Tia, and E. Adei, J. Mol. Graph. Model. 92, 267 (2019).
  12. N. M. Thong, Q. V. Vo, T. L. Huyen, M. V. Bay, D. Tuan, and P. C. Nam, ACS Omega 4, 14996 (2019).
  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al., Gaussian09W D01 (Gaussian, Inc., Wallingford, CT, 2013).
  14. F. N. Ajeel, A. M. Khudhair, M. H. Mohammed, and Kh. M. Mahdi, Russ. J. Phys. Chem. 93, 778 (2019).
  15. L. Turker, Defence Technol. 15, 154 (2019).
  16. S. B. Novir, Chem. Phys. Lett. 690, 86 (2017).
  17. M. Borges-Martinez, D. Alvarez, N. Montenegro-Pohlhammer, M. I. Menendez, R. Lopez, and G. Cardenas-Jiron, J. Phys. Chem. C 123, 19362 (2019).
  18. T. Lu and F. W. Chen, J. Comput. Chem. 33, 580 (2012).
  19. O. Holtomo, M. Nsangou, J. J. Fifen, and O. Motapon, J. Mol. Graph. Model. 92, 100 (2019).
  20. G. Mazzone, N. Russo, and M. Toscano, Comput. Theor. Chem. 1077, 39 (2016).
  21. J. B. Du, Y. L. Tang, Z. W. Long, S. H. Hu, and T. Li, Russ. J. Phys. Chem. 88, 819 (2014).
  22. T. Lu and F. W. Chen, Acta Phys.-Chim. Sin. 28, 1 (2012).
  23. P. Justin, R. Niranjana Devi, and K. Anitha, Canad. J. Phys. 97, 308 (2019).
  24. M. Manachoua, C. Morellb, H. Chermetteb, and S. Boughdiria, Chem. Phys. Lett. 727, 95 (2019).
  25. Y. E. Deng, D. H. Yu, X. F. Cao, L. G. Liu, C. Y. Rong, T. Lu, and S. B. Liu, Mol. Phys. 116, 956 (2017).
  26. J. S. Cao, Q. Ren, F. W. Chen, and T. Lu, Sci. Sin. Chim. 45, 1281 (2015).
  27. G. Vengatesh and M. Sundaravadivelu, Res. Chem. Intermed. 45, 4395 (2019).
  28. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
  29. X. Q. Ding, J. J. Ding, D. Y. Li, L. Pan, and C. X. Fei, Acta Phys.-Chim. Sin. 34, 314 (2018).
  30. F. L. Hirshfeld, Theor. Chem. Acc. 44, 129 (1977).
  31. T. Lu and F. W. Chen, Acta Chim. Sin. 69, 2393 (2011).
  32. T. Lu and S. Manzetti, Struct. Chem. 25, 1521 (2014).
  33. W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14, 33 (1996).
  34. D. Wu, J. Yan, P. X. Tang, S. S. Li, K. L. Xu, and H. Li, Food Chem. 188, 370 (2015).
  35. Y. Abiko and Y. Kumagai, Chem. Res. Toxicol. 26, 1080 (2013).