Surfactant Assisted Electrochemical Determination of Noscapine and Papaverine by TiO2 Nanoparticles/Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode

 Somayeh Sharifi Somayeh Sharifi , Ebrahim Zarei Ebrahim Zarei , Alireza Asghari Alireza Asghari
Российский электрохимический журнал
Abstract / Full Text

In the present study, simultaneous voltammetric determination of noscapine and papaverine as two important alkaloids in opium was studied for the first time. A carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) and TiO2 nanoparticles (TiO2/NPs) (MWCNTs/TiO2/NPs/CPE) was used for this purpose in the presence of cetyltrimethylammonium bromide (CTAB). Electron transfer rate of [Fe(CN)6]3–/4– as a redox couple probe on the surface of the MWCNTs/TiO2/NPs/CPE was studied using electrochemical impedance spectroscopy (EIS). The modified electrode preserved and combined the properties of the individual modifiers synergistically. A significant enhancement in the peak current responses of noscapine and papaverine were observed at the modified electrode compared to the bare electrode. Also, the peak currents of noscapine and papaverine were increased in the presence of CTAB. Under the optimal conditions, the peak current of differential pulse voltammograms was linearly dependent on analyte concentration in the range of 4–600 µM for noscapine and 5–400 µM for papaverine. The limit of detection (LOD) for noscapine and papaverine were 3.5 and 4.6 µM, respectively. Finally, this method was also applied for the determination of noscapine and papaverine in real samples.

Author information
  • Department of Chemistry, Semnan University, Semnan, Iran

    Somayeh Sharifi & Alireza Asghari

  • Department of Basic Sciences, Farhangian University, Tehran, Iran

    Ebrahim Zarei

  1. United Nations. Recommended Methods for Testing Opium, New York: United Nations, 1987.
  2. Gerald, M.C., Pharmacology: an Introduction to Drug, Englewood Cliffs, N.J.: Prentice-Hall, 1974.
  3. Yan, J., Mi, J.Q., He, J.T., Guo, Z.Q., Zhao, M., and Chang, W., Development of an indirect competitive ELISA for the determination of papaverine, Talanta, 2005, vol. 66, p. 1005.
  4. Mashkovskii, D.M., Lekarstvennye sredstva (Pharmaceuticals), Kharkov: Torsing, 1998, vol. 1.
  5. Han, X., Lamshoft, M., Grobe, N., Ren, X., Fist, A.J., Kutchan, T.M., Spiteller, M., and Zenk, M.H., The biosynthesis of papaverine proceeds via (S)-reticuline, Phytochemistry, 2010, vol. 71, p. 11.
  6. Zhang, S., Zhuang, Y., and Ju, H., Flow-injection chemiluminescence determination of papaverine using cerium(IV)–sulfite system, Anal. Lett., 2004, vol. 37, p. 143.
  7. Zhuang, Y.F., Cai, X.L., Yu, J.S., and Ju, H.X., Flow injection chemiluminescence analysis for highly sensitive determination of noscapine, J. Photoch. Photobiol. A, 2004, vol. 162, p. 457.
  8. Kasperek, R., Determination of diclofenac sodium and papaverine hydrochloride in tablets by HPLC method, Acta Pol. Pharm. Drug Res., 2008, vol. 65, p. 403.
  9. Yin, C.H., Tang, C., and Wu, X.Y., HPLC determination of aminophylline, methoxyphenamine hydrochloride, noscapine and chlorphenamine maleate in compound dosage forms with an aqueous-organic mobile phase, J. Pharm. Biomed. Anal., 2003, vol. 33, p. 393.
  10. Tang, Y., Luan, J., and Wang, Q., Determination of papaverine hydrochloride in skin and blood and the drug contents in pig skin, Acta Acad. Med. Sin., 2002, vol. 24, p. 413.
  11. Ghasemi, J., Niazi, A., and Ghorbani, R., Determination of trace amounts of lorazepam by adsorptive cathodic differential pulse stripping method in pharmaceutical formulations and biological fluids, Anal. Lett., 2006, vol. 39, p. 1159.
  12. Piech, R. and Bator, B.P., Sensitive and fast determination of papaverine by adsorptive stripping voltammetry on renewable mercury film electrode, Cent. Eur. J. Chem., 2013, vol. 11, p. 736.
  13. Navaee, A., Salimi, A., and Teymourian, H., Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine, Biosens. Bioelectron., 2012, vol. 31, p. 205.
  14. Tajik, S., Taher, M.A., and Beitollahi, H., First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor, J. Electroanal. Chem., 2013, vol. 704, p. 137.
  15. Filik, H., Avan, A.A., and Yetimoğlu, E.K., Multiwalled carbon nanotubes β-cyclodextrin modified electrode for electrochemical determination of bisphenol S in water samples, Russ. J. Electrochem., 2019, vol. 55, p. 70.
  16. Hadi, M. and Mostaanzadeh, H., Sensitive detection of histamine at metal-organic framework (Ni-BTC) crystals and multi-walled carbon nanotubes modified glassy carbon electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1045.
  17. Lunsford, S.K., Choi, H., Stinson, J., Yeary, A., and Dionysiou, D.D., Voltammetric determination of catechol using a sonogel carbon electrode modified with nanostructured titanium dioxide, Talanta, 2007, vol. 73, p. 172.
  18. Razmi, E.D., Beitollahi, H., Mahani, M.T., and Anjomshoa, M., TiO2/Fe3O4/multiwalled carbon nanotubes nanocomposite as sensing platform for simultaneous determination of morphine and diclofenac at a carbon paste electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1132.
  19. Yuan, S. and Hu, S., Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes, Electrochim. Acta, 2004, vol. 49, p. 4287.
  20. Kalanur, S.S., Seetharamappa, J., and Prashanth, S.N., Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode, Colloids Surf. B, 2010, vol. 78, p. 217.
  21. Mahshid, S., Luo, S., Yang, L., Mahshid, S.S., Askari, M., Dolati, A., and Cai, Q., Carbon-Pt nanoparticles modified TiO2 nanotubes for simultaneous detection of dopamine and uric acid, J. Nanosci. Nanotechnol., 2011, vol. 11, p. 6668.
  22. Palabiyik, B.B., Kurbanoglu, S., Gumustas, M., Uslu, B., and Ozkan, S.A., Electrochemical approach for the sensitive determination of anticancer drug epirubicin in pharmaceuticals in the presence of anionic surfactant, Rev. Roum. Chim., 2013, vol. 58, p. 647.
  23. Behpour, M., Attaran, A.M., Sadiany, M.M., and Khoobi, A., Adsorption effect of a cationic surfactant at carbon paste electrode as a sensitive sensor for study and determination of folic acid, Measurement, 2016, vol. 77, p. 257.
  24. Jain, R., Mishra, R., and Dwivedi, A., Voltammetric behavior of an antibiotic drug and its enhancement determination in presence of cetyltrimethyl ammonium bromide, J. Sci. Ind. Res., 2009, vol. 68, p. 945.
  25. Atta, N.F., Darwish, S.A., Khalil, S.E., and Golal, A., Effect of surfactants on the voltammetric response and determination of an antihypertensive drug, Talanta, 2007, vol. 72, p. 1438.
  26. Rusling, J.F., Controlling electrochemical catalysis with surfactant microstructures, Acc. Chem. Res., 1991, vol. 24, p. 75.
  27. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.
  28. Nicholson, R.S. and Shain, I., Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.
  29. Navaee, A., Salimi, A., and Teymourian, H., Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine, Biosens. Bioelectron., 2012, vol. 31, p. 205.
  30. Rezaei, B., Heidarbeigy, M., Ensafi, A.A., and Dinari, M., Electrochemical determination of papaverine on Mg‒Al layered double hydroxide/graphene oxide and CNT modified carbon paste electrode, IEEE Sens., 2015, vol. 16, no. 10, p. 1.
  31. Varsha, K., Sharma, A., Kaur, A., Madan, J., Pandey, R.S., Jain, U.K., and Chandra, R., Nanostructures for Cancer Therapy; Micro and Nano Technologies, chapter 28: Natural Plant-Derived Anticancer Drugs Nanotherapeutics: a Review on Preclinical to Clinical Success, Elsivier, 2017, p. 775.
  32. Petruczynik, A., Waksmundzka-Hajnos, M., and Hajnos, M. L., The effect of chromatographic conditions on the separation of selected alkaloids in RP-HPTLC, J. Chromatogr. Sci., 2005, vol. 43, p. 183.
  33. Tzouwara-Karayanni, S.M., Karayannis, M.I., and Crouch, S.R., Removal of ascorbic acid interference in the determination of glucose and sucrose in non-alcoholic beverages, Food Chem., 1993, vol. 48, p. 95.
  34. Nah, H., Yim, J., Lee, S.-G., Lim, J.-B., and Kim, J.-H., Ascorbate oxidase minimizes interference by high-concentration ascorbic acid in total cholesterol assays, Ann. Lab. Med., 2016, vol. 36, p. 188.