Статья
2019

The Mixture of Nanoparticles of RuO2 and Pt Supported on Ti as an Efficient Catalyst for Direct Formic Acid Fuel Cell


 Miroslav Spasojević Miroslav Spasojević , Lenka Ribić-Zelenović Lenka Ribić-Zelenović , Milica Spasojević Milica Spasojević , Tomislav Trišović Tomislav Trišović
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519120164
Abstract / Full Text

An active coating, composed of a mixture of nanocrystals of RuO2 with the rutile structure and nanocrystals of metal Pt, was thermally synthetized on a titanium substrate. Cyclic voltammograms and polarization curves showed that the catalytic activity of the coating for the formic acid oxidation in an acidic solution increased with an increase in the RuO2 content, reaching the maximum value at 50 mol % RuO2. Additionally, further increase in the RuO2 content resulted in a decline of the catalytic activity. The catalytic effect was attributed to a bifunctional mechanism and an electronic effect. The bifunctional mechanism had a dominant role and was based on the fact that Ru–OH species were formed on Ru atoms of RuO2 at more negative potentials than on Pt. Those species oxidized the adsorbed COad and HCOOad—species on adjacent Pt atoms of clusters of metal Pt and thus discharge them to oxidize new HCOOH molecules.

Author information
  • Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Faculty of Technical Sciences, Čačak, University of Kragujevac, 32000, Čačak, Serbia

    Miroslav Spasojević & Lenka Ribić-Zelenović

  • Innovation Center of the Faculty of Chemistry, University of Belgrade, 11000, Belgrade, Serbia

    Milica Spasojević

  • Institute of Technical Sciences SASA, 11000, Belgrade, Serbia

    Tomislav Trišović

References
  1. Yu, X. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.
  2. Demirci, U.B., Direct liquid-feed fuel cells: thermodynamic and environmental concerns, J. Power Sources, 2007, vol. 169, p. 239.
  3. Rice, C., Ha, R.I., Masel, R.I., Waszczuk, P., Wieckowski A., and Barnard, T., Direct formic acid fuel cells, J. Power Sources, 2002, vol. 111, p. 83.
  4. Rice, C., Ha, S., Masel, R.I., and Wieckowski, A., Catalysts for direct formic acid fuel cells, J. Power Sources, 2003, vol. 115, p. 229.
  5. Zhou, X.C., Xing, W., Liu, C.P., and Lu, T.H., Platinum-macrocycle co-catalyst for electro-oxidation of formic acid, Electrochem. Commun., 2007, vol. 9, p. 1469.
  6. Wakisaka, M., Mitsui, S., Hirose, Y., Kawashima, K., Uchida, H., and Watanabe, M., Electronic structures of Pt–Co and Pt–Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS, J. Phys. Chem. B, 2006, vol. 110, p. 23489.
  7. Chen, W., Kim, J., Sun, S., and Chem, S., Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid, Langmuir, 2007, vol. 23, p. 11303.
  8. Kristian, N., Yan, Y., and Wang, X., Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation, Chem. Commun., 2008, vol. 0, p. 353.
  9. Rigsby, M.A., Zhou, W.P., Lewera, A., Duong, H.T., Bagus, P.S., Jaegermann, W., Hunger, R., and Wieckowski, A., Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru, J. Phys. Chem. C, 2008, vol. 112, p. 15595.
  10. Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.
  11. Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W., Carbon-supported Pd−Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.
  12. Winjobi, O., Zhang, Z., Liang, C., and Li, W., Carbon nanotube supported platinum-palladium nanoparticles for formic acid oxidation, Electrochim. Acta, 2010, vol. 55, p. 4217.
  13. Xu, J., Zhang, C., Wang, X., Ji, H., Zhao, C., Wang, Y., and Zhang, Z., Fabrication of bi-modal nanoporous bimetallic Pt–Au alloy with excellent electrocatalytic performance towards formic acid oxidation, Green Chem., 2011, vol. 13, p. 1914.
  14. Lu, Y. and Chen, W., One-pot synthesis of heterostructured Pt–Ru nanocrystals for catalytic formic acid oxidation, Chem. Commun., 2011, vol. 47, p. 2541.
  15. Saleem, F., Zhang, Z., Xu, B., Xu, X., He, P., and Wang, X., Ultrathin Pt–Cu nanosheets and nanocones, J. Am. Chem. Soc., 2013, vol. 135, p. 18304.
  16. Tammam, R.H. and Saleh, M.M., Electrocatalytic oxidation of formic acid on nano/micro fibers of poly(p-anisdine) modified platinum electrode, J. Power Sources, 2014, vol. 246, p. 178.
  17. Guo, Z., Zhang, X., Sun, H., Dai, X., Yang, Y., Li, X., and Meng, T., Novel honeycomb nanosphere Au@Pt bimetallic nanostructure as a high performance electrocatalyst for methanol and formic acid oxidation, Electrochim. Acta, 2014, vol. 134, p. 411.
  18. Gong, M., Li, F., Yao, Z., Zhang, S., Dong, J., Chen, Y., and Tang, Y., Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation, Nanoscale, 2015, vol. 7, p. 4894.
  19. Li, D., Meng, F., Wang, H., Jiang, X., and Zhu, Y., Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation, Electrochim. Acta, 2016, vol. 190, p. 852.
  20. Garrick, T.R., Diao, W., Tengco, J.M., Stach, E.A., Senanayake, S.D., Chen, D.A., and Weidner, J.W., The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation, Electrochim. Acta, 2016, vol. 195, p. 106.
  21. Qi, Z., Xiao, C., Liu, C., Goh, T.W., Zhou, L., Maligal-Ganesh, R., Pei, Y., Li, X., Curtiss, L.A., and Huang, W., Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 2017, vol. 139, p. 4762.
  22. Chen, Y.X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell, Angew. Chem. Ed., 2006, vol. 15, p. 981.
  23. Osawa, M., Komatsu, K., Samjeskè, G., Ikeshoji, T., Cuesta, A., and Gutièrrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem. Ed., 2011, vol. 50, p. 1159.
  24. Capon, A. and Parsons, R., The oxidation of formic acid at noble metal electrodes: I. Review of previous work, J. Electroanal. Chem. Interfacial Electrochem., 1973, vol. 44, p. 1.
  25. Markovic, N.M., Gasteiger, H.A., Ross, P.N., Jr., Jiang, X.D., Villegas, I., and Weaver, M.J., Electro-oxidation mechanisms of methanol and formic acid on Pt‒Ru alloy surfaces, Electrochim. Acta, 1995, vol. 40, p. 91.
  26. Ross, P.N., in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998, p. 43.
  27. Jarvi, T.D. and Stuve, E.M., in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998, p. 75.
  28. Felin, J.M. and Herrero, E., in Handbook of Fuel Cells, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., New York: Wiley, 2003, vol. 2, p. 679.
  29. Waszczuk, P., Crown, A., Mitrovski, S., and Wieckovski, H., in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vielstich, W., Gasteiger, H.A., and Lamm, A., Eds., New York: Wiley, 2003, vol. 2, p. 635.
  30. Adžić, R.R., Simić, D.N., Despić, A.R., and Dražić, D.M., Electrochemical oxidation of formic acid at noble metals: catalytic effects of foreign metal monolayers, J. Electroanal. Chem. Interfacial Electrochem., 1977, vol. 80, p. 81.
  31. Thomas, F.S. and Masel, R.I., Formic acid decomposition on palladium-coated Pt(1 1 0), Surf. Sci., 2004, vol. 573, p. 169.
  32. Koper, M.T.M., Shubina, T.E., and van Santen, R.A., Periodic density functional study of CO and OH adsorption on Pt–Ru alloy surfaces: implications for CO tolerant fuel cell catalysts, J. Phys. Chem. B, 2002, vol. 106, p. 686.
  33. Beltramo, G.L., Shubina, T.E., and Koper, M.T.M., Cover picture: oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT, J. Chem. Phys. Chem., 2005, vol. 6, p. 2597.
  34. Alden, L.R., Han, D.K., Matsumoto, F., Abruna, H.D., and DiSalvo, F.J., Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: electrocatalytic oxidation of formic acid, Chem. Mater., 2006, vol. 18, p. 5591.
  35. Alden, L.R., Roychowdhury, C., Matsumoto, F., Han, D.K., Zeldovich, V.B., and DiSalvo, H.D., Synthesis, characterization, and electrocatalytic activity of PtPb nanoparticles prepared by two synthetic approaches, Langmuir, 2006, vol. 22, p. 10465.
  36. Herrero, E., Fernandez-Vega, A., Feliu, J.M., and Aldaz, A., Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As, J. Electroanal. Chem., 1993, vol. 350, p. 73.
  37. Xia, X.H. and Iwasita, T., Influence of underpotential deposited lead upon the oxidation of  HCOOH  in HClO4 at platinum electrodes, J. Electrochem. Soc., 1993, vol. 140, p. 2559.
  38. Macia, M.D., Herrero, E., and Feliu, J.M., Formic acid oxidation on BiPt(1 1 1) electrode in perchloric acid media. A kinetic study, J. Electroanal. Chem., 2003, vol. 554, p. 25.
  39. Gojković, S.L., Tripković, A.V., Stevanović, R.M., and Krstajić, N.V., High activity of Pt4Mo alloy for the electrochemical oxidation of formic acid, Langmuir, 2007, vol. 23, p. 12760.
  40. Demirici, U.B., Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells, J. Power Sources, 2007, vol. 173, p. 11.
  41. Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.
  42. Tong, Y.Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., and Oldfield, E., An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc., 2002, vol. 124, p. 468.
  43. Alayoglu, S., Nilekar, A.U., Mavrikakis, M., and Eichhorn, B., Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nat. Mater., 2008, vol. 7, p. 333.
  44. Barros, R.B., Garcia, A.R., and Ilharco, L.M., The chemistry of formic acid on oxygen modified Ru(0 0 1) surfaces, Surf. Sci., 2005, vol. 591, p. 142.
  45. Lei, T., Lee, J., Zei, M.S., and Ertl, G.J., Surface properties of Ru(0001) electrodes interacting with formic acid, J. Electroanal. Chem., 2003, vols. 554–555, p. 41.
  46. Park, I.S., Lee, K.S., Choi, J.H., Park, H.Y., and Sung, Y.E., Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation, J. Phys. Chem. C, 2007, vol. 111, p. 19126.
  47. Ribic-Zelenovic, L. J., Magistarska teza, Univ. of Belgrade, 2001.
  48. Galizzioli, D., Tantardini, F., and Trasatti, S., Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions, J. Appl. Electrochem., 1975, vol. 5, p. 203.
  49. Burke, L.D. and O’Neill, J.F., Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 341.
  50. Weast, R.C., Handbook of Chemistry and Physics, 55th ed., Cleveland: CRC Press, 1974–1975.
  51. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, J. Phys. Chem., 1993, vol. 97, p. 12020.
  52. Burke, L.D. and Murphy, O.J., The electrooxidation of methanol and related compounds at ruthenium dioxide-coated electrodes, J. Electroanal. Chem. Interfacial Electrochem., 1979, vol. 101, p. 351.
  53. Hadzi-Jordanov, S., Angerstein-Kozlowska, H., Vuković, M., and Conway, B.E., The state of electrodeposited hydrogen at ruthenium electrodes, J. Phys. Chem., 1977, vol. 81, p. 2271.
  54. Ticanelli, E., Beery, J.G., Paffett, M.T., and Gottesfeld, S., An electrochemical, ellipsometric, and surface science investigation of the PtRu bulk alloy surface, J. Electroanal. Chem. Interfacial Electrochem., 1989, vol. 258, p. 61.