Electroconducting Filling Particles with Magnetoresistance

A. V. Bakhtiiarov A. V. Bakhtiiarov , G. V. Stepanov G. V. Stepanov , D. A. Semerenko D. A. Semerenko , D. A. Lobanov D. A. Lobanov
Российский электрохимический журнал
Abstract / Full Text

Aimed at creating a magnetic filling material with improved electroconducting properties for novel magneto-controllable composites, a method has been developed of electroplating metals onto particles of carbonyl iron powders of various shapes and sizes. The experimentally observed improvement in the effective conductivity of thus produced products can reach several orders of magnitude. This type of fillers may be used in preparation of magnetic elastomers which feature composite materials with the electric resistance strongly dependent on the external magnetic field (also known as the magnetoresistance effect). To achieve the latter one needs a high concentration of filler particles with good magnetic and electroconducting properties.

Author information
  • Russian State Scientific Institute for Chemical Technologies of Organoelement Compounds, 105118, Moscow, Russia

    A. V. Bakhtiiarov, G. V. Stepanov & D. A. Lobanov

  • Bauman Moscow State Technical University, 105005, Moscow, Russia

    D. A. Semerenko

  1. Ishigure, Y., Iijima, S., Ito, H., Ota, T., Unuma, H., Takahashi, M., Hikichi, Y., and Suzuki, H., Electrical and elastic properties of conductor-polymer composites, J. Mater. Sci., 1999, vol. 34, p. 2979. https://doi.org/10.1023/A:1004664225015
  2. Kikegawa, K., Kuhara, R., Kwon, J., Sakamoto, M., Tsuchiya, R., Nagatani, N., and Nonomura, Y., Physical origin of a complicated tactile sensation: ‘shittori feel’, R. Soc. Open Sci., 2019, vol. 6, p. 190039. https://doi.org/10.1098/rsos.190039
  3. Oh, J.-S., Sohn, J.W., and Choi, S.-B., Material characterization of hardening soft sponge featuring MR fluid and application of 6-DOF MR Haptic Master for robot-sssisted surgery, Materials, 2018, vol. 11, p. 1268. https://doi.org/10.3390/ma11081268
  4. Volkov, A.I. and Zharskiy, I.M., Bol’shoi khimicheskii spravochnik (Comprehensive Handbook of Chemistry, Minsk: Sovremennaya Shkola, 2005.
  5. Bakhtiiarov, A.V., Stepanov, G.V., and Storozhenko, P.A., Russian Patent 2684295, 2018.
  6. Petek, T., Hoyt, N.C., Savinell, R.F., and Wainright, J.S., Characterizing slurry electrodes using electrochemical impedance spectroscopy, J. Electrochem. Soc., 2016, vol. 163, no. 1, p. A5001. https://doi.org/10.1149/2.0011601jes
  7. Fleischmann, M. and Oldfield, J.W., Fluidised bed electrodes: Part I. Polarisation predicted by simplified models; Part II. The effective resistivity of the discontinuous metal phase, J. Electroanal. Chem., 1971, vol. 29, no. 2, p. 211. https://doi.org/10.1016/S0022-0728(71)80084-0
  8. Kumar, S., Ramamurthy, T., Subramanian, B., and Basha, A., Studies on the fluidized bed electrode, Int. J. Chem. Reactor Eng., 2008, vol. 6, p. 1.
  9. Oriňakova, R., Kupkova, M., Dudrova, E., Kabatova, M., and Šupicova, M., The role of coating in the cellular material preparation, Chem. Pap., 2004, vol. 58, no. 4, p. 236.
  10. Fečková, Z., Surface treatment of powder material by metal coatings – Study of corrosion properties, J. Met., Mater. Miner., 2007, vol. 17, no. 1, p. 41.
  11. Lux, A.L. and Gálová, B.M., Electrode process of copper and nickel deposition on pressed iron powder electrodes., Chem. Papers, 1994, vol. 48, no. 5, p. 330.
  12. Wolfgang, S., German Patent DE19823341, 1998.
  13. Eiki, T., Kiyoshi, T., Youichi, K., and Takahiro, F., US Patent 4954235, 1990.
  14. Zhang, J., Yan, S.G., and Wagner, F.T., US Patent 2009145772, 2009.
  15. Hayakawa, H., Ito, M., and Takeda, K., Patent JP2011074482 (Japan), 2011.
  16. Hayakawa,H., Ito, M., and Takeda, K., Patent JP2012062566 (Japan), 2012.
  17. Adzic, R. and Vukmirovic, M., US Patent 2013056359 (US), 2013.
  18. Takeshima, E. and Watanabe, Y., Patent JPH0544083 (Japan), 1993.
  19. Kremnev, L.S. and Kotova, N.T., URRS Patent 1183296, 1995.
  20. Beane, G.L., Johnson, C.E., Kelley, D.R., and Lashmore, D.S., US Patent 6254757, 2001.
  21. Beane, G.L., Johnson, C.E., Kelley, D.R., and Lashmore, D.S., Patent WO9741279 (WIPO), 1997.
  22. Ito, M. and Takeda, K., Patent JP2010285663 (Japan), 2010.
  23. Fujii, T., Kojima, Y., Takatsu K., and Takeshima, E., US Patent 4908106, 1990.
  24. Yih, P., Patent WO9940241 (WIPO), 1999.
  25. Yih, P., US Patent 5911865, 1999.
  26. Yih, P., US Patent 6010610, 2000.
  27. Eichman, J.W. and Griego, T.P., US Patent 2002179430, 2002.
  28. Ito, M., Patent JP2014169488 (Japan), 2014.
  29. Beane, G.L. and Lashmore, D.S., US Patent 6287445, 2001.
  30. Potapov, Yu.M., USSR Patent 1435397, 1988.
  31. Eichman, J.W., Griego, T.P., and Velasquez, G., US Patent 2003038034, 2003.
  32. Gusev, S.V., Krasovskiy, A.I., Kuzmin, V.P., Mamonov, S.K., Miroshnokov, F.F., Moiseyev, G.K., Moskvin, Yu.I., and Shvaykov, V.V., USSR Patent 1038067, 1983.
  33. Gorobetz, S.V., Gorobetz, O.Yu., Dvoynenko, O.K., and Lebeda, G.L., Influence of magnetstatic fields of the ferromagnetic substrate on the electrodeposition of nickel dendrites, Fiz. Met. Metalloved., 2012, no. 113, p. 137.
  34. Tikhonov, K.I. and Agafonova, N.I., Elektroosazhdenie metallov iz organicheskikh rastvoritelei (Uchebnor poosbie) (Electrodeposition of metals from organic solvents. A study guide), Leningrad: Tekhnologicheskii Institut, 1979.
  35. Zaichenko, A.D., Sizonenko, O.N., Taftai, E.I., Pristash, N.S., and Torpakov, A.S., Influence of the high-voltage treatment of the Fe–Ti–C and Fe–Ti–B–C pulverulent compositions on their electrical resistance variation, in Elektricheskiye kontakty i elektrody (Electric Contacts and Electrodes), Kiev: IPM NANU, 2014, p. 129.
  36. Bakhvalov, G.T. and Turkovskaya, A.V., Korroziya i zashchita metallov (Corrosion and protection of metals), Moscow: Chernaya Tsvetnaya Metallurgiya, 1947.
  37. Rose, I. and Whittington, C., Nickel Plating Handbook, Brussels: Nickel Institute, 2014.
  38. Antikhovitch, I.V., Krupnik, S.M., Chernik, A.A., and Zharskiy, I.M., Electrochemical deposition of nickel coatings from acetate-chloride-based electrolytes in the pulsed mode, Trudy BGTU. Khim. Tekhnol. Neorg. V-v, 2011, no. 3, p. 8.
  39. Peganova, N.V., Electrodeposition of nickel from acetate-chloride solutions for metal electroplating at low concentrations of nickel in the steady-state and pulsed modes of electrolysis, Cand. Sci. (Chem.) Dissertation Moscow: Mendeleev University of Chemical Engineering. 2008.
  40. Lurye, Yu.Yu., Spravochnik po Analiticheskoi Khimii (Analytical Chemistry Handbook), M.: Khimiya, 1971.
  41. Hammerich, O., Chapter 16. Anodic Oxidation of Oxygen-Containing compounds. Organic Electrochemistry. Book 2, Baizer, M.M. and Lund, H., Eds, New York: Marcel Dekker, 1989.
  42. Fialkov, Yu.Ya. and Grischenko, V.F., Elektrovydelenie metallov iz cnevodnykh rastvorov (Electroextraction of metals from non-aqueous solutions), Kiev: Naukova dumka, 1985.
  43. Lond, P.B., Salmon, P.S., and Champeney, D.C., Structure of Ni2+ solutions in ethylene glycol by neutron diffraction: An observed hydrogen bond between the solvent ligands in the first and second cation coordination shells?, J. Am. Chem. Soc., 1991, vol. 113, p. 6420.
  44. Hiroshi, O. and Brimblecombe, P., Potential trace metal-organic complexation in the atmosphere, Sci. World J., 2002, vol. 2, p. 767. https://doi.org/10.1100/tsw.2002.132