Examples



mdbootstrap.com



 
Статья
2018

Redox Behavior and Transport Properties of Composites Based on (Fe,Ni)3O4 ± δ for Anodes of Solid Oxide Fuel Cells


V. A. Kolotygin V. A. Kolotygin , V. A. Noskova V. A. Noskova , S. I. Bredikhin S. I. Bredikhin , V. V. Kharton V. V. Kharton
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518060071
Abstract / Full Text

The Fe–Ni–O system designed for producing bimetal-containing composite anodes of solid oxide fuel cells (SOFCs) was studied. The solubility of nickel in the structure of spinel (Fe,Ni)3O4 ± δ at atmospheric oxygen pressure is ~1/3. Moderate reduction at 1023 K and p(O2) ≈ 10–20 atm leads to partial decomposition of spinels, forming an electron-conducting phase (Fe,Ni)1–yO and submicron bimetallic Fe–Ni particles on the oxide surface, which have potentially high catalytic activity. The electron conductivity has a thermally activated character and increases substantially during the reduction. In the anode conditions of SOFCs, the electric conductivity reaches 30–100 S/cm, while the thermal expansion coefficients are ~12 × 10–6 K–1, which ensures compatibility with solid electrolytes. At the same time, significant volume changes during the redox cycling (up to ~1% on the linear scale) necessitate the introduction of additional components such as yttria-stabilized zirconia (YSZ). The polarization resistance of the model composite anode of reduced Fe2NiO4 ± δ and YSZ deposited on the YSZ solid electrolyte membrane was ~1.8 Ohm cm2 at 923 K in a 4% H2–Ar–H2O atmosphere.

Author information
  • Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    V. A. Kolotygin, V. A. Noskova, S. I. Bredikhin & V. V. Kharton

  • National University of Science and Technology MISiS, Moscow, 119991, Russia

    V. A. Noskova

References
  1. Minh, N.Q., Ceramic Fuel Cells, J. Am. Ceram. Soc., 1993, vol. 76, p. 563.
  2. Jiang, S.P. and Chan, S.H., A review of anode materials development in solid oxide fuel cells, J. Mater. Sci., 2004, vol. 39, p. 4405.
  3. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. II. Electrochemical behavior vs. materials science aspects, J. Solid State Electrochem., 2008, vol. 12, p. 1367.
  4. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, p. 1007.
  5. Park, H.C. and Virkar, A.V., Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadoliniadoped ceria electrolyte, J. Power Sources, 2009, vol. 186, p. 133.
  6. Lee, S.I., Vohs, J.M., and Gorte, R.J., A study of SOFC anodes based on Cu–Ni and Cu–Co bimetallics in CeO2–YSZ, J. Electrochem. Soc., 2004, vol. 151, p. 1319.
  7. Gross, M.D., Vohs, J.M., and Gorte, R.J., Recent progress in SOFC anodes for direct utilization of hydrocarbons, J. Mater. Chem., 2007, vol. 17, p. 3071.
  8. Lu, Z.G., Zhu, J.H., Bi, Z.H., and Lu, X.C., A Co–Fe alloy as alternative anode for solid oxide fuel cell, J. Power Sources, 2008, vol. 180, p. 172.
  9. Konar, R., Mukhopadhyay, J., Sharma, A.D., and Basu, R.N., Synthesis of Cu–YSZ and Ni–Cu–YSZ cermets by a novel electroless technique for use as solid oxide fuel cell anode: Application potentiality towards fuel flexibility in biogas atmosphere, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1151.
  10. Kim, S., Kim, C., Lee, J.H., Shin, J.B, Lim, T.-H., and Kim, G., Tailoring Ni-based catalyst by alloying with transition metals (M = Ni, Co, Cu, and Fe) for direct hydrocarbon utilization of energy conversion devices, Electrochim. Acta, 2017, vol. 225, p. 399.
  11. Ringuedé, A., Labrincha, J.A., and Frade, J.R., A combustion synthesis method to obtain alternative cer-met materials for SOFC anodes, Solid State Ionics, 2001, vol. 141, p. 549.
  12. Kan, H. and Lee, H., Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel, Catal. Commun., 2010, vol. 12, p. 36.
  13. Wang, J.-G., Liu, C.-J., Zhang, Y.-P., Yu, K.-L., Zhu, X.-L., and He, F., Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst, Catal. Today, 2004, vol. 89, p. 183.
  14. Dieckmann, R., Defects and cation diffusion in magnetite (IV): nonstoichiometry and point defect structure of magnetite (Fe3-δO4), Ber. Bunsen-Ges., 1982, vol. 86, p. 112.
  15. Kofstad, P., Otklonenie ot stekhiometrii, diffuziya i elektroprovodnost’ v prostykh okislakh metallov (Nonstoichiometry, Diffusion, and Electric Conductivity in Metal Oxides), Moscow, Mir, 1975.
  16. Tret’yakov, Yu.D., Khimiya nestekhiometricheskikh oksidov (Chemistry of Nonstoichiometric Oxides), Moscow: Mosk. Gos. Univ., 1974.
  17. Petric, A. and Ling, H., Electrical conductivity and thermal expansion of spinels at elevated temperatures, J. Am. Ceram. Soc., 2007, vol. 90, p. 1515.
  18. Summerfelt, S.R. and Carter, C.B., Kinetics of NiFe2O4 precipitation in NiO, J. Am. Ceram. Soc., 1992, vol. 75, p. 2244.
  19. Solís, C., Somacescu, S., Palafox, E., Balaguer, M., and Serra, J.M., Particular transport properties of NiFe2O4 thin films at high temperatures, J. Phys. Chem. C, 2014, vol. 118, p. 24266.
  20. Patrakeev, M.V., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L., Kharton, V.V., Avdeev, M., and Marques, F.M.B., Oxygen nonstoichiometry, conductivity, and Seebeck coefficient of La0.3Sr0.7Fe1 †xGaxO2.65 + δ perovskites, J. Solid State Chem., 2002, vol. 167, p. 203.
  21. West, A.R., Solid State Chemistry and Its Applications, vol. 2, New York: Wiley, 2014.
  22. Lazarević, Z.Ž., Sekulić, D.L., Ivanovski, V.N., and Romčević, N.Ž., A structural and magnetic investigation of the inversion degree in spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 ferrites prepared by soft mechanochemical synthesis, Int. J. Chem. Molec. Nucl. Mater. Metal. Eng., 2015, vol. 9, p. 1066.
  23. Nozaki, T., Hayashi, K., Miyazaki, Y., and Kajitani, T., Cation distribution dependence on thermoelectric properties of doped spinel M0.6Fe2.4O4, Mater. Trans., 2012, vol. 53, p. 1164.
  24. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Crystal., 1976, vol. A32, p. 751.
  25. Yaremchenko, A.A., Kovalevsky, A.V., Naumovich, E.N., Kharton, V.V., and Frade, J.R., High-temperature electrical properties of magnesiowustite Mg1 †xFexO and spinel Fe3 †x †yMgxCryO4 ceramics, Solid State Ionics, 2011, vol. 192, p. 252.
  26. Klemensø, T., Chung, C., Larsen, P.H., and Mogensen, M., The mechanism behind redox instability of anodes in high-temperature SOFCs, J. Electrochem. Soc., 2005, vol. 152, p. 2186.
  27. Mori, M., Yamamoto, T., Itoh, H., Inaba, H., and Tagawa, H., Thermal expansion of nickel–zirconia anodes in Solid Oxide Fuel Cells during fabrication and operation, J. Electrochem. Soc., 1998, vol. 145, p. 1374.
  28. Schneider, F. and Schmalzried, H., Thermodynamic investigation of the system Ni–Fe–O, Z. Phys. Chem. Neue Folge, 1990, vol. 166, p. 1.
  29. Rhamdhani, M.A., Hayes, P.C., and Jak, E., Subsolidus phase equilibria of the Fe–Ni–O System, Metall. Mater. Trans. B, 2008, vol. 39B, p. 690.