Статья
2018

Physicochemical Properties and Structure Peculiarities of Proton-Conducting Perovskites La0.9Sr0.1Sc1–хFe x O3–δ (х = 0.003–0.47)


A. V. Kuz’min A. V. Kuz’min , A. Yu. Stroeva A. Yu. Stroeva , V. P. Gorelov V. P. Gorelov , A. A. Pankratov A. A. Pankratov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518010056
Abstract / Full Text

Single-phase solid solutions based on proton-conducting oxide La0.9Sr0.1ScO3–δ (LSS) and containing from 0 to 47 at % Fe in the scandium sublattice are synthesized by the method of combustion with ethylene glycol at 1400°C. Their electric conductivity, thermal expansion, and parameters of orthorhombic lattice are studied. Anomalies in the temperature dependences of conductivity and thermal expansion associated with dissolution of water vapor in the oxides are observed, as well as the breaks in concentration dependences of orthorhombic lattice parameters in the region of low iron contents. The introduction of even small amounts of iron oxide (up to 3 at % Fe) into LSS leads to disappearance of protonic conductivity. The factors responsible for the appearance of defective structure and its model explaining this phenomenon are discussed.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. V. Kuz’min, A. Yu. Stroeva, V. P. Gorelov & A. A. Pankratov

  • Yeltsin Ural Federal University, Yekaterinburg, 620002, Russia

    A. V. Kuz’min & A. Yu. Stroeva

References
  1. Bonanos, N., Transport properties and conduction mechanism in high-temperature protonic conductors, Solid State Ionics, 1992, vol. 53–56, p.967.
  2. Iguchi, F., Protonic SOFCs using perovskite-type conductors, Adv. Sci. Technol. (Faenza, Italy), 2014, vol. 95, p.66.
  3. Gorelov, V.P. and Stroeva, A.Yu., Proton conducting electrolytes based on LaScO3, Russ. J. Electrochem., 2012, vol. 48, no. 10, p.949.
  4. Stroeva, A.Yu., Gorelov, V.P., Kuzmin, A.V., Antonova, E.P., and Plaksin, S.V., Phase composition and conductivity of La1–xSrxScO3–α (x = 0.01–0.20) under oxidative conditions, Russ. J. Electrochem., 2012, vol. 48, no. 5, p.509.
  5. Stroeva, A.Yu. and Gorelov, V.P., Nature of conductivity of perovskites La1–xSrxScO3–α (x = 0.01–0.15) under oxidative and reducing conditions, Russ. J. Electrochem., 2012, vol. 48, no. 11, p. 1079.
  6. Stroeva, A.Yu., Gorelov, V.P., Kuz’min, A.V., Ponomareva, V.G., and Petrov, S.A., Influence of iron oxide on properties of protonic La0.9Sr0.1ScO3, Phys. Solid State, 2015, vol. 57, no. 7, p. 1334.
  7. Shimura, T., Tanaka, H.I., Matsumoto, H., and Yogo, T., Influence of the transition-metal doping on conductivity of a BaCeO3-based protonic conductor, Solid State Ionics, 2005, vol. 176, no. 39–40, p. 2945.
  8. Nikodemski, S., Tong, J., and O’Hayre, R., Solid-state reactive sintering mechanism for proton conducting ceramics, Solid State Ionics, 2013, vol. 253, p.201.
  9. Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A., and Tsiakaras, P., BaCeO3: Materials development, properties and application, Prog. Mater. Sci., 2014, vol. 60, p.72.
  10. Meng, B., Lin, Z.L., Zhu, Y.J., Yang, Q.Q., Kong, M., and Meng, B.F., Review on nanoperovskites: materials, synthesis, and applications for proton and oxide ion conductivity, Ionics, 2015, vol. 21, p.601.
  11. Goldstein, G.I., Newbury, D.E., Echlin, P., Joy, D.C., Fiori, C., and Lifshin, E. Scanning Electron Microscopy and X-ray Microanalysis, New York: Plenum, 1981; translated into Russian.
  12. Kuzmin, A.V., Gorelov, V.P., Melekh, B.T., Glerup, M., and Poulsen, F.W., Phase transitions in undoped BaCeO3, Solid State Ionics, 2003, vol. 162–163, p.13.
  13. Suzuki, Y., Phase transition temperature of fluoritetype ZrO2-Y2O3 solid solutions containing 8–44 mol % Y2O3, Solid State Ionics, 1995, vol. 81, p.211.
  14. Han, D., Okumura, Y., Nose, Y., and Uda, T., Synthesis of La1-xSrxSc1 -yFeyO3 -d (LSSF) and measurement of water content in LSSF, LSCF and LSC hydrated in wet artificial air at 300°C, Solid State Ionics, 2010, vol. 181, p. 1601.
  15. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., 1976, vol. 32, p.751.
  16. Kemmler-Sack, S. and Hofelich, I., On BaPrO3 and BaTbO3, Z. Naturforsch., 1971, vol. 26b, p. 539.