Статья
2021

Ionic Conductivity of Composite Solid Electrolytes (C4H9)4NBF4–Al2O3


A. S. Ulihin A. S. Ulihin , N. F. Uvarov N. F. Uvarov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521080140
Abstract / Full Text

Composite solid electrolytes (C4H9)4NBF4–Al2O3 are synthesized in a wide range of composition. Their thermal, structural, and conducting properties are studied. The conductivity of the composites passes through a maximum at x ~ 0.9 and reaches 7.2 × 10–4 S/cm at 150°C for the 0.1(C4H9)4NBF4–0.9Al2O3 composite. The absence of thermal effect at the melting temperature of the ionic salt and the absence of peaks of tetrabutylammonium tetrafluoroborate in the diffraction pattern for a composite, which exhibits a high ionic conductivity, indicate that at x ≥ 0.9, (C4H9)4NBF4 is in the amorphous state, and ionic transfer occurs along the ionic salt/oxide interface.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia

    A. S. Ulihin & N. F. Uvarov

  • Novosibirsk State University, Novosibirsk, Russia

    N. F. Uvarov

  • Novosibirsk State Technical University, Novosibirsk, Russia

    N. F. Uvarov

References
  1. Uvarov, N.F., Iskakova, A.A., Bulina, N.V., Gerasimov, K.B., Slobodyuk, A.B., and Kavun, V.Ya., Ion conductivity of the plastic phase of the organic salt [(C4H9)4N]BF4, Russ. J. Electrochem., 2015, vol. 51, p. 491.
  2. Uvarov, N.F., Vanek, P., Yuzyuk, Yu.I., Zelezny, V., Studnicka, B.B., Bokhonov, B.B., Dulepov, E., and Petzelt, J., Properties of rubidium nitrate in ion-conducting RbNO3–Al2O3 nanocomposites, Solid State Ionics, 1996, vol. 90, p. 201.
  3. Lavrova, G.V., Ponomareva, V.G., and Uvarov, N.F., Nanocomposite ionic conductors in the system MeNO3–SiO2 (Me = Rb, Cs), Solid State Ionics, 2000, vols. 136–137, p. 1285.
  4. Ponomareva, V.G., Uvarov, N.F., Lavrova, G.V., and Hairetdinov, E.F., Composite protonic solid electrolytes in the CsHSO4–SiO2 system, Solid State Ionics, 1996, vol. 90, p. 161.
  5. Uvarov, N.F., Shastry, M.C.R., and Rao, K.J., Structure and ionic transport in aluminum oxide containing composites, Rev. Solid State Sci., 1990, vol. 4, p. 61.
  6. Uvarov, N.F., Hairetdinov, E.F., and Bratel, N.B., Solid State Ionics, 1996, vols. 86–88, p. 573.
  7. Uvarov, N.F., Vanek, P., Savinov, M., Zelezny, V., Studnicka, J., and Petzelt, J., Percolation effect, thermodynamic properties of AgI and interface phases in AgI–Al2O3 composites, Solid State Ionics, 2000, vol. 127, p. 253.
  8. Tadanaga, K., Imai, K., Tatsumisago, M., and Minami, T., Preparation of AgI–Al2O3 composites with high ionic conductivity using Al2O3 aerogel and xerogel, J. Electrochem. Soc., 2000, vol. 147, p. 4061.
  9. Ulihin, A.S., Uvarov, N.F., Mateyshina, Yu. G., Brezhneva, L.I., and Matvienko, A.A., Composite solid electrolytes LiClO4–Al2O3, Solid State Ionics, 2006, vol. 177, p. 2787.
  10. Ulihin, A.S. and Uvarov, N.F., Electrochemical properties of composition solid electrolytes LiClO4–MgO, Russ. J. Electrochem., 2009, vol. 45, p. 707.
  11. Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., Iskakova, A.A., and Mateishina, Yu.G., Physicochemical properties of (CH3)2NH2Cl–Al2O3 composites, Russ. J. Electrochem., 2017, vol. 53, p. 834.
  12. Uvarov, N.F. and Vanek, P., Stabilization of new phases in ion-conducting nanocomposites, J. Mater. Synth. Process., 2000, vol. 8, p. 319.
  13. Wasserman, B., Martin, T.P., and Maier, J., Electrical properties of the hexagonal modification of lithium iodide, Solid State Ionics, 1988, vols. 28–30, p. 1514.
  14. Maier, J., Defect chemistry in heterogeneous systems, Solid State Ionics, 1995, vol. 75, p. 139.
  15. Uvarov, N.F. and Boldyrev, V.V., Size effects in chemistry of heterogeneous systems, Russ. Chem. Rev., 2001, vol. 70, p. 265.
  16. Sun, G., Song, W., Liu, X., Long, D., Qiao, W., and Ling, L., Capacitive matching of pore size and ion size in the negative and positive electrodes for supercapacitors, Electrochim. Acta, 2011, vol. 56, p. 9248.