Hydrogen Evolution Reaction Electrocatalysts Based on Electrolytic and Chemical-Catalytic Alloys of Rhenium and Nickel

V. V. Kuznetsov V. V. Kuznetsov , Yu. D. Gamburg Yu. D. Gamburg , V. M. Krutskikh V. M. Krutskikh , V. V. Zhulikov V. V. Zhulikov , E. A. Filatova E. A. Filatova , A. L. Trigub A. L. Trigub , O. A. Belyakova O. A. Belyakova
Российский электрохимический журнал
Abstract / Full Text

The composition, structure, and electrocatalytic properties in HER are compared for Re–Ni electrodeposits and Ni–Re–P alloys synthesized by chemical-catalytic deposition with the use of sodium hypophosphite as the reducer. The coordination numbers of nickel and rhenium and the interatomic distances of synthesized materials are determined by EXAFS and XANES methods. It is shown that the structure of Re‒Ni catalysts with the highest catalytic activity lacks the far order as regards the position of rhenium and nickel atoms, which allows assuming that these electrode materials are in the amorphous state. For chemical-catalytic Ni–Re–P coatings, it is shown that the introduction of rhenium into their composition lowers down the phosphorus content in the alloy formed. The chemical-catalytic Ni–Re–P coatings show promise as the HER catalysts in acid solutions.

Author information
  • Mendeleev University of Chemical Technology, 125047, Moscow, Russia

    V. V. Kuznetsov & E. A. Filatova

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. D. Gamburg, V. M. Krutskikh & V. V. Zhulikov

  • National Research Nuclear University—Moscow Physical Engineering Institute, 115409, Moscow, Russia

    V. V. Kuznetsov

  • Kurchatov University—National Research Center, 123098, Moscow, Russia

    A. L. Trigub

  • Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia

    O. A. Belyakova

  1. Frumkin, A.N., Izbrannye trudy. Perenapryazhenie vodoroda (Selected Studies. Hydrogen Overvoltage), Nikol’skii, B.P., Ed., Moscow: Nauka, 1988.
  2. Brooman, A.W. and Kuhn, A.T., Correlation between the rate of the hydrogen electrode reaction and the properties of alloys, J. Electroanal. Chem. Interfacial Electrochem., 1974. vol. 49, p. 325. https://doi.org/10.1016/S0022-0728(74)80165-8
  3. McCrory, Ch.C.L., Jung, S., Ferrer, I.M., Chatman, Sh.M., Peters, J.C., and Jaramillo, T.F., Benchmarking HER and OER electrocatalysts for solar water splitting devices, J. Am. Chem. Soc., 2015. vol. 137, p. 4347. https://doi.org/10.1021/ja510442p
  4. Petrii, O.A. and Tsirlina, G.A., Electrocatalytic activity prediction for hydrogen electrode reaction: Intuition, art, science, Electrochim. Acta, 1994, vol. 39, p. 1739. https://doi.org/10.1016/0013-4686(94)85159-X
  5. Trasatti, S., Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions, J. Electroanal. Chem. Interfacial Electrochem., 1972, vol. 39, p. 163. https://doi.org/10.1016/S0022-0728(72)80485-6
  6. Jakšic, M.M., Electrocatalysis of hydrogen evolution in the light of the Brenner‑Engel theory for bonding in metals and intermetallic phases, Electrochim. Acta, 1984, vol. 29, p. 1539. https://doi.org/10.1016/0013-4686(84)85007-0
  7. Schmickler, W. and Santos, E, Interfacial Electrochemistry, 2nd Ed., Berlin: Heidelberg Springer, 2010, p. 163.
  8. Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R., Chen, J.G. Pandelov, S., and Stimming, U., Trends in the exchange current for hydrogen evolution., J. Electrochem. Soc., 2005, vol. 152, p. J23. https://doi.org/10.1149/1.1856988
  9. Kuznetsov, V.V., Gamburg, Yu.D., Zhulikov, V.V., Batalov, R.S., and Filatova, E.A., Re–Ni cathodes obtained by electrodeposition as a promising electrode material for hydrogen evolution reaction in alkaline solutions, Electrochim. Acta, 2019, vol. 317, p. 358. https://doi.org/10.1016/j.electacta.2019.05.156
  10. Popczun, E.J., McKone, J.R., Read, K.G., Biacchi, A.J., Wiltrout, A.M., Lewis, N.S., and Schaak, R.E., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 2013, vol. 135, p. 9267. https://doi.org/10.1021/ja403440e
  11. Feng, L., Vrubel, H., Bensimon, M., and Hu, X., Easily prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 5917. https://doi.org/10.1039/C4CP00482E
  12. Luo, P., Zhang, H., Liu, L., Zhang, Y., Deng, J., Xu, Ch., Hu, N., and Wang, Y., Targeted synthesis of unique nickel sulfides (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 2500. https://doi.org/10.1021/acsami.6b13984
  13. Shang, X., Yan, K.-L., Rao, Y., Dong, B., Chi, J.-Q., Liu, Y.-R., Li, X., Chai, Y.-M., and Liu, Ch.-G., In situ cathodic activation of V-incorporated NixSy nanowires for enhanced hydrogen evolution, Nanoscale, 2017, vol. 9, p. 12353. https://doi.org/10.1039/C7NR02867A
  14. Bhat, K.S. and Nagaraja, H.S., Nickel selenide nanostructures as an electrocatalyst for hydrogen evolution reaction, Int. J. Hydrogen Energy, 2018, vol. 43, p. 19851. https://doi.org/10.1016/j.ijhydene.2018.09.018
  15. Xiong, W., Guo, Q., Guo, Z., Li, H., Zhao, R., Chen, Q., Liu, Zh., and Wang, X., Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution, J. Mater. Chem. A., 2018, vol. 6, p. 4297. https://doi.org/10.1039/C7TA10202J
  16. Bai, J., Sun, Q., Wang, Z., and Zhao, Ch., Electrodeposition of cobalt-nickel hydroxide composite as a high-efficiency catalyst for hydrogen evolution reactions, J. Electrochem. Soc., 2017, vol. 164, p. H587. https://doi.org/10.1149/2.0761709jes
  17. Kuznetzov, V.V., Gamburg, Yu.D., Zhulikov, V.V., Batalov, R.S., and Filatova, E.A., Electrochemical synthesis of nickel-rhenium alloy and its electrocatalytic properties, Gal’vanotekhn. Obrab. Poverkhn., 2018, vol. 26, no. 4, p. 4.
  18. Duhin, A., Inberg, A., Eliaz, N., and Gileadi, E., Electroless plating of nickel-rheniun alloys, Electrochim. Acta, 2011, vol. 56, p. 9637. https://doi.org/10.1016/j.electacta.2011.05.030
  19. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben K.D., Handbook of X-ray Photoelectron Spectroscopy, Chastain, J., Ed., Eden Prairie MN, Perkin-Elmer Corporation, 1992.
  20. Chernyshov, A.A., Veligzhanin A.A., and Zubavichus, Y.V., Structural materials science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results, Nucl. Instr. Meth. Phys. Res., 2009, vol. 603, p. 95. https://doi.org/10.1016/j.nima.2008.12.167
  21. Ravel, B. and Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Rad., 2005, vol. 12, p. 537. https://doi.org/10.1107/S0909049505012719
  22. Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D., Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure, Phys. Rev. B, 1998, vol. 58, p. 7565. https://doi.org/10.1103/PhysRevB.58.7565
  23. Kuznetsov, V.V., Gamburg, Yu.D., Zhalnerov, M.V., Zhulokov, V.V., and Batalov, R.S., Reaction of hydrogen evolution of Co–Mo (W) and Ni–Re electrolytic alloys in alkaline media, Russ. J. Electrochem., 2016, vol. 52, p. 901. https://doi.org/10.7858/S0424857016090061
  24. Vargas-Uscategui, A., Mosquera, E., Chornik, B., and Cufaentes, L., Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulse-current, Electrochim. Acta, 2015, vol. 178, p. 739. https://doi.org/10.1016/j.electacta.2015.08.065
  25. Garcia-Garcia, A., Ortega-Zarzosa, G., Rincon, M.E., and Orozco, G., The hydrogen evolution reaction on rhenium metallic electrodes: a selected review and new experimental evidence, Electrocatalysis, 2015, vol. 6, p. 263. https://doi.org/10.1007/s12678-014-0240-z
  26. Danilovich, N., Subbaraman, R., Strmcnik, D., Chang, K.-Ch., Paulikas, A.P., Stamenkovic, V.R., and Markovic, N.M., Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts, Angew. Chem. Int. Ed., Engl., 2012, vol. 51, p. 12495. https://doi.org/10.1002/anie.201204842
  27. Subbaraman, R., Tripkovic, D., Chang, K.-Ch., Strmcnik, D., Paulikas, A.P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., and Markovic, N.M., Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts, Nat. Mater., 2012, vol. 11, p. 550. https://doi.org/10.1038/nmat3313
  28. Gennero de Chialvo, M.R. and Chialvo, A.C., Hydrogen evolution reaction: analysis of the Volmer–Heyrovsky–Tafel mechanism with a generalized adsorption model, J. Electroanal. Chem., 1994, vol. 372, p. 209. https://doi.org/10.1016/0022-0728(93)03043-O
  29. Benderskii, V.A. and Ovchinnikov, A.A., Mechanism of electrochemical reaction of hydrogen evolution, in Fizicheskays khimiya. Sovremennye problemy (Physical Chemitry. Modern Problems), Moscow: Khimiya, 1980, vol. 1, p. 202/
  30. Sheng, W., Gasteiger, H.A., and Shao-Horn, Y., Hydrogen oxidation and evolution reaction kinetics on platinum: Acid and alkaline electrolytes, J. Electrochem. Soc., 2010, vol. 157, p. B1529. https://doi.org/10.1149/1.3483106
  31. Skúlason, E., Karlberg, G.S., Rossmeisl, J., Bligaard, T., Greeley, J., Jonsson, H., and Norskov, J.K., Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode, Phys. Chem. Chem. Phys., 2007, vol. 9, p. 3241. https://doi.org/10.1039/B700099E
  32. Kuznetsov, V.V., Gamburg, Yu.D., Batalov, R.S., Zhulikov, V.V., and Zaitsev, V.A., Hydrogen evolution on electrocatalytically active electrodeposited Ni–Re alloy. Electrochemical impedance study, Russ. J. Electrochem., 2018, vol. 54, p. 598. https://doi.org/10.1134/S1023193518070054
  33. Diegle, R.B., Sorensen, N.R., and Nelson, G.C., Dissolution of glassy Ni–P alloys in H2SO4 and HCl electrolytes, J. Electrochem. Soc., 1986, vol. 133, p. 1769. https://doi.org/10.1149/1.2109016
  34. Kuznetsov, V.V., Vinokurov, E.G., Telezhkina, A.V., and Filatova, E.A., Electrodeposition of corrosion-resistant Cr–P and Cr–P–W coatings from solutions based on compounds of trivalent chromium, J. Solid State Electrochem., 2019, vol. 23, p. 2367. https://doi.org/10.1007/s10008-019-04347-w
  35. Bard, A.J., Parsons, R., and Jordan, J. Standard Potentials in Aqueous Solutions, New York: Marcel Dekker, 1985.
  36. Lur'e, M.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1971.
  37. Vajo, J.J., Aikens, D.A., Ashley L., and Poelty, D.E., Facile electroreduction of perrhenate in weakly acidic citrate and oxalate media, Inorg. Chem., 1981, vol. 20, p. 3328. https://doi.org/10.1021/ic5022a037
  38. Ahmad, Z., Principles of Corrosion Engineering and Corrosion Control, Amsterdam: Elsevier, 2006.