Examples



mdbootstrap.com



 
Статья
2020

Pd/SAPO-41 Bifunctional Catalysts with Enhanced Pd Dispersion Prepared by Ultrasonic-Assisted Impregnation: High Selectivity for n-Hexadecane Hydroisomerization


Guozhi JiaGuozhi Jia, A. L. MaximovA. L. Maximov, Wei WangWei Wang, Xuefeng BaiXuefeng Bai, Xiaomeng WeiXiaomeng Wei, Xiaofang SuXiaofang Su, Tong LiTong Li, Chunmu GuoChunmu Guo, Wei WuWei Wu
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220040047
Abstract / Full Text

The preparation of bifunctional catalysts with high catalytic selectivity for the n-alkanes hydroisomerization still remains challenging for the production of bio-diesel. Herein, two series of Pd/SAPO-41 bifunctional catalysts are prepared by the ultrasonic-assisted impregnation (xPd/S41-U) with different treating time and conventional incipient wetness impregnation methods (0.30Pd/S41-I) on the SAPO-41 molecular sieve, respectively. The physico-chemical property of the synthesized SAPO-41 and prepared catalysts were studied by XRD, SEM, ICP, N2 physical adsorption, H2 chemisorption and Py-IR measurements. The catalytic performance for the n-hexadecane hydroisomerization over all catalysts is also studied. The characteristic results indicate that the xPd/S41-U catalysts show stronger Brønsted acidity compared with the 0.30Pd/S41-I catalyst. In addition, the Pd dispersion of the xPd/S41-U catalysts is almost two times higher than that of the 0.30Pd/S41-I catalyst, which leads more Pd cluster to enter into the micropores of the SAPO-41 molecular sieve. Furthermore, the 0.30Pd/S41-U catalyst with 0.30 wt % Pd loading shows promoted catalytic performance than that of the 0.30Pd/S41-I catalyst with the same Pd loading because of the stronger metal function and more favourable metal-acid balance caused by the larger CPd/CH+ ratio. Therefore, the ultrasonic-assisted impregnation prepared Pd/SAPO-41 catalysts are potential to be widely employed for the n-alkane hydroisomerization.

Author information
  • National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, Heilongjiang, ChinaGuozhi Jia, Wei Wang, Xuefeng Bai, Xiaomeng Wei, Xiaofang Su, Tong Li, Chunmu Guo & Wei Wu
  • Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991, Moscow, RussiaA. L. Maximov
References
  1. Avinash, A. and Murugesan, A., Fuel, 2018, vol. 216, pp. 322–329. https://doi.org/10.1016/j.fuel.2017.12.029
  2. Uvarkina, D.D., Piryutko, L.V., Danilova, I.G., Budukva, S.V., Klimov, O.V., Kharitonov, A.S., and Noskov, A.S., Russ. J. Appl. Chem., 2015, vol. 88, no. 11, pp. 1827–1838. https://doi.org/10.1134/S10704272150110142
  3. Jeon, Y., Chi, W.S., Hwang, J., Kim, D.H., Kim, J.H., and Shul, Y.G., Appl Catal B-Environ., 2019, vol. 242, pp. 51–59. https://doi.org/10.1016/j.jiec.2019.07.029
  4. Gaile, A.A., Saifidinov, B.M., Kolesov, V.V., and Koldobskaya, L.L., Russ. J. Appl. Chem., 2010, vol. 83, no. 3, pp. 464–472. https://doi.org/10.1134/S1070427210030171
  5. Li, P., Sakuragi, K., and Makino, H., Fuel Process. Technol., 2019, vol. 193, pp. 295–303. https://doi.org/10.1016/j.fuproc.2019.05.009
  6. Liu, X., Deng, B., Fu, J., Xu, Z., Liu, J., Li, M., Li, Q., Ma, Z., and Feng, R., Chem. Eng. J., 2019, vol. 355, pp. 170–180. https://doi.org/10.3390/app9183721
  7. Pimerzin, A.A., Savinov, A.A., Ishutenko, D.I., Verevkin, S.P., and Pimerzin, A.A., Russ. J. Appl. Chem., 2019, vol. 92, no. 12, pp. 1772–1779. https://doi.org/10.1134/S1070427219120198
  8. Mantovani, M., Mandelli, D., Gonçalves, M., and Carvalho, W.A., Chem. Eng. J., 2018, vol. 348, pp. 860–869. https://doi.org/10.1016/j.cej.2018.05.059
  9. Singh, D., Sharma, D., Soni, S.L., Sharma, S., and Kumari, D., Fuel, 2019, vol. 253, pp. 60–71. https://doi.org/10.1016/j.fuel.2019.04.174
  10. Santamaria, L., Lopez, G., Arregi, A., Amutio, M., Artetxe, M., Bilbao, J., and Olazar, M., Appl. Catal. B-Environ., 2019, vol. 242, pp. 109–120. https://doi.org/10.1016/j.apcatb.2018.09.081
  11. Wang, W., Liu, C., and Wu, W., Catal. Sci. Technol., 2019, vol. 9, pp. 4162–4187. https://doi.org/10.1039/C9CY00499H
  12. Guisnet, M., Catal. Today, 2013, vol. 218, pp. 123–134. https://doi.org/10.1016/j.cattod.2013.04.028
  13. Pastvova, J., Kaucky, D., Moravkova, J., Rathousky, J., Sklenak, S., Vorokhta, M., Brabec, L., Pilar, R., Jakubec, I., Tabor, E., Klein, P., and Sazama, P., ACS Catal., 2017, vol. 7, no. 9, pp. 5781–5795. https://doi.org/10.1021/acscatal.7b01696
  14. Smit, B., and Maesen, T.L., Nature, 2008, vol. 451, pp. 671–678. https://doi.org/10.1038/nature06552
  15. Song, X., Bai, X., Wu, W., Kikhtyanin, O.V., Zhao, A., Xiao, L., Su, X., Zhang, J., and Wei, X., Mol. Catal., 2017, vol. 433, pp. 84–90. https://doi.org/10.1016/j.mcat.2016.12.017
  16. Yue, T., Liu, W., Li, L., Zhao, X., Zhu, K., Zhou, X., and Yang, W., J. Catal., 2018, vol. 364, pp. 308–327. https://doi.org/10.1016/j.jcat.2018.06.003
  17. Park, K.C., and Ihm, S.K., Appl. Catal. A-Gen., 2000, vol. 203, pp. 201–209. https://doi.org/10.1016/S0926-860X(00)00490-7
  18. Nghiem, V.T., Sapaly, G., Mériaudeau, P., and Naccache, C., Top. Catal., 2000, vol. 14, pp. 131–138. https://doi.org/10.1023/A:1009071403372
  19. Mériaudeau, P., Tuan, V.A., Sapaly, G., Nghiem, V.T., and Naccache, C., Catal. Today, 1999, vol. 49, pp. 285–292. https://doi.org/10.1016/S0920-5861(98)00435-0
  20. Kim, M.Y., Lee, K., and Choi, M., J. Catal., 2014, vol. 319, pp. 232–238. https://doi.org/10.1016/j.jcat.2014.09.001
  21. Parmar, S., Pant, K.K., John, M., Kumar, K., Pai, S.M., and Newalkar, B.L., J. Mol. Catal. A-Chem., 2015, vol. 404, pp. 47–56. https://doi.org/10.1016/j.molcata.2015.04.012
  22. Liu, Y., Li, Z., Yu, Q., Chen, Y., Chai, Z., Zhao, G., Liu, S., Cheong, W.C., Pan, Y., Zhang, Q., Gu, L., Zheng, L., Wang, Y., Lu, Y., Wang, D., Chen, C., Peng, Q., Liu, Y., Liu, L., Chen, J., and Li, Y., J. Am. Chem. Soc., 2019, vol. 141, pp. 9305–9311. https://doi.org/10.1021/jacs.9b02936
  23. Samad, J.E., Blanchard, J., Sayag, C., Louis, C., and Regalbuto, J.R., J. Catal., 2016, vol. 342, pp. 203–212. https://doi.org/10.1016/j.jcat.2016.08.004
  24. Nemamcha, A., Rehspringer, J.L., and Khatmi, D., J. Phys. Chem. B., 2006, vol. 110, pp. 383–387. https://doi.org/10.1021/jp0535801
  25. Su, X., Vinu, A., Aldeyab, S.S., and Zhong, L., Catal. Lett., 2015, vol. 145, pp. 1388–1395. https://doi.org/10.1007/s10562-015-1537-0
  26. Li, J., and Bai, X., J. Mater. Sci., 2016, vol. 51, pp. 9108–9122. https://doi.org/10.1007/s10853-016-0164-5
  27. Li, J., Bai, X., and Lv, H., Ultrason. Sonochem., 2020, vol. 60, pp. 104746. https://doi.org/10.1016/j.ultsonch.2019.104746
  28. Wei, X., Kikhtyanin, O.V., Parmon, V.N., Wu, W., Bai, X., Zhang, J., Xiao, L., Su, X., Zhang, Y., J. Porous Mater., 2017, vol. 25, pp. 235–247. https://doi.org/10.1007/s10934-017-0437-7
  29. Schmidt, F., Hoffmann, C., Giordanino, F., Bordiga, S., Simon, P., Carrillo-Cabrera, W., and Kaskel, S., J. Catal., 2013, vol. 307, pp. 238–245. https://doi.org/10.1016/j.jcat.2013.07.020
  30. Zhang, Y., Wang, W., Jiang, X., Su, X., Kikhtyanin, O.V., and Wu, W., Catal. Sci. Technol., 2018, vol. 8, pp. 817–828. https://doi.org/10.1039/C7CY02106B.
  31. Alvarez, F., Ribeiro, F.R., Perot, G., Thomazeau C., and Guisnet, M., J. Catal., 1996, vol. 162, pp. 179–189. https://doi.org/10.1006/jcat.1996.0275
  32. Kim, J., Han, S.W., Kim, J.C., and Ryoo, R., ACS Catal., 2018, vol. 8, no.11, pp. 10545–10554. https://doi.org/10.1021/acscatal.8b03301
  33. Ge, L., Yu, G., Chen, X., Li, W., Xue, W., Qiu, M., and Sun, Y., New J. Chem., 2020, vol. 44, no. 7, pp. 2996–3003. https://doi.org/10.1039/C9NJ06215G
  34. Yang, L., Wang, W., Song, X., Bai, X., Feng, Z., Liu, T., and Wu, W., Fuel Process. Technol., 2019, vol. 190, pp. 13–20. https://doi.org/10.1016/j.fuproc.2019.02.027
  35. Yang, J., Kikhtyanin, O.V., Wu, W., Zhou, Y., Toktarev, A.V., Echevsky, G.V., and Zhang, R., Micropor. Mesopor. Mat., 2012, vol. 150, pp. 14–24. https://doi.org/10.1016/j.micromeso.2011.09.020
  36. Kim, M.Y., Lee, K., and Choi, M., J. Catal., 2014, vol. 319, pp. 232–238. https://doi.org/10.1016/j.jcat.2014.09.001