Статья
2022

Effect of Nanodiamond Additives on the Ionic Conductivity of the (C2H5)3CH3NBF4 Organic Salt


D. V. Alekseev D. V. Alekseev , Yu. G. Mateyshina Yu. G. Mateyshina , N. F. Uvarov N. F. Uvarov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522070035
Abstract / Full Text

The paper presents studies of the transport and electrochemical characteristics of solid composite electrolytes (1 – x)(C2H5)3CH3NBF4xCND (where CND is the UDA-С nanosized diamonds with Ss = 300 ± 20 m2/g, 0 < x < 1). The addition of a nanodiamonds inert additive is shown to lead to an increase in the electrical conductivity of the composite electrolyte by 2 orders of magnitude up to 1.7 × 10–3 S/cm at 200°C for x = 0.98. The theoretical dependences describe well the experimental data over the 0 < x < 0.98 concentration range at temperatures of 25–200°C. The stability of composite materials in a C/0.6(C2H5)3CH3NBF4–0.4CND/C cell was studied by cyclic voltammetry. The fundamental possibility of using the composite solid electrolytes with nanodiamonds additives in electrochemical devices is substantiated by the example of a C/0.6(C2H5)3CH3NBF4–0.4CND/C solid-state supercapacitor. Thus, it was demonstrated that nanodiamonds can be considered as an effective non-oxide additive in composite solid organic electrolytes used in electrochemical devices.

Author information
  • Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

    D. V. Alekseev, Yu. G. Mateyshina & N. F. Uvarov

  • Novosibirsk State University, Novosibirsk, Russia

    D. V. Alekseev, Yu. G. Mateyshina & N. F. Uvarov

  • Novosibirsk State Technical University, Novosibirsk, Russia

    Yu. G. Mateyshina & N. F. Uvarov

  • Surgut State University, Surgut, Russia

    Yu. G. Mateyshina

References
  1. MacFarlane, D.R. and Forsyth, M., Plastic crystal electrolyte materials: new perspectives on solid state ionics, Adv. Mater., 2001, vol. 13, nos. 12–13, p. 957.
  2. Every, H.A., Bishop, A.G., MacFarlane, D.R., Oradd G., and Forsyth, M., Room temperature fast-ion conduction in imidazolium halide salts, J. Mater. Chem., 2001, vol. 11, p. 3031.
  3. Asayama, R., Kawamura, J., and Hattori, T., Phase transition and ionic transport mechanism of (C4H9)4NI, Chem. Phys. Letters, 2005, vol. 414, p. 87.
  4. Hayasaki, T., Hirakawa, S., and Honda, H., Investigation of new ionic plastic crystals in tetraalkylammonium tetrabuthylborate, Z. Naturforsch., 2014, vol. 69a, p. 433.
  5. K. Matsumoto, K., Harinaga, U., Tanaka, R., Koyama, A., Hagiwara, R., and Tsunashima, K., The structural classification of the highly disordered crystal phases of [Nn][BF4], [Nn][PF6], [Pn][BF4], and [Pn][PF6] salts (\({\text{N}}_{n}^{{\text{ + }}}\) = tetraalkylammonium and \({\text{P}}_{n}^{{\text{ + }}}\) = tetraalkylphosphonium), Phys. Chem. Chem. Phys., 2014, vol. 16, p. 23616.
  6. Pringle, J.M., Howlett, P. C., MacFarlane, D. R., and Forsyth, M., Organic ionic plastic crystals: recent advances, J. Mater. Chem., 2010, vol. 20, p. 2056.
  7. Uvarov, N.F., Iskakova, A.A., Bulina, N.V., Gerasimov, K.B., Slobodyuk, A.B., and Kavun, V.Ya., Ion Conductivity of the Plastic Phase of the Organic Salt [(C4H9)4N]BF4, Russ. J. Electrochem., 2015, vol. 51, p. 491.
  8. Iskakova, A.A., Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., and Mateishina, Yu.G., Tetrabutylammonium Salts (C4H9)4NBF4 and [(C4H9)4N]Br, Russ. J. Electrochem., 2017, vol. 53, p. 880.
  9. Ivanov-Schitz, A.K. and Murin, I.V., Solid State Ionics (in Russian), St. Petersburg: St. Petersburg Univ, 2010.
  10. Uvarov, N.F., Composite Solid Electrolytes (in Russian), Novosibirsk: Sib. Branch, Russ. Acad. Sci., 2008.
  11. Uvarov, N.F., Ulihin, A.S., and Mateyshina, Yu.G., Advanced Nanomaterials for Catalysis and Energy Synthesis, Characterization and Applications, in: A volume Advanced Nanomaterials, Vladislav A. Sadykov, Ed., Amsterdam: Elsevier Sci., 2019, p. 587.
  12. Mateyshina, Y.G., Alekseev, D.V., and Uvarov, N.F., Ionic Transport in CsNO2-Based Nanocomposites with Inclusions of Surface Functionalized Nanodiamonds, Nanomaterials, 2021, vol. 11, p. 414.
  13. Alekseev, D.V., Mateyshina, Yu.G., and Uvarov, N.F., Transport Properties of LiClO4–Nanodiamond Composites, Russ. J. Electrochem., 2021, vol. 57, p. 1037.
  14. Mateyshina, Yu., Alekseev, D., and Uvarov, N., The effect of the nanodiamonds additive on ionic conductivity of silver iodide, Materials Today: Proc., 2020, p. 373.
  15. Ulikhin, A.S. and Uvarov, N.F., Ionic Conductivity of Composite Solid Electrolytes (C4H9)4NBF4–Al2O3, Russ. J. Electrochem., 2021, vol. 57, p. 1015.
  16. Ulikhin, A.S., Uvarov, N.F., Gerasimov, K.B., Iskakova, A.A., and Mateishina, Yu.G., Physicochemical Properties of (CH3)2NH2Cl–Al2O3 Composites, Russ. J. Electrochem., 2017, vol. 53, p. 834.
  17. Sinelnikova, Yu.E., Synthesis of mesoporous carbon materials, 30th Winter School on Solid State Chemistry (in Russian), Yekaterinburg: Ural Federal Univ., 2021, p. 34.
  18. http://www.chemspider.com/Chemical-Structure.99204 28.html?rid=a29b7e9c-4a03-4317-93e5-87d937aecc15.
  19. Galinski, M., Lewandowski, A., and Stepniak, I., Ionic liquids as electrolytes: A critical review, Electrochim. Acta, 2006, vol. 51, p. 5567.