Examples



mdbootstrap.com



 
Статья
2018

Thermodynamic Analysis and Kinetics of Etching of Thin PbS Films in Hydrochloric Acid Solutions


S. S. TuleninS. S. Tulenin, D. A. NovotorkinaD. A. Novotorkina, M. S. RogovoyM. S. Rogovoy, K. A. KarpovK. A. Karpov, A. V. PozdinA. V. Pozdin, L. N. MaskaevaL. N. Maskaeva, V. F. MarkovV. F. Markov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427218030023
Abstract / Full Text

A hydrochloric acid solution of hydrogen peroxide was suggested for etching lead sulfide films. The solubility of lead sulfide in relation to the hydrochloric acid concentration in the etching solution was calculated using thermodynamic analysis, taking into account the stability of lead complex species. The kinetics of hydrogen peroxide decomposition in the hydrochloric acid solution was studied, and the formal rate equation of the process was constructed.

Author information
  • Ural Federal University named after the first president of Russia B.N. Yeltsin, Yekaterinburg, 620075, RussiaS. S. Tulenin, D. A. Novotorkina, M. S. Rogovoy, K. A. Karpov, A. V. Pozdin, L. N. Maskaeva & V. F. Markov
  • Ural Institute of State Fire Service, EMERCOM of Russia, ul. Mira 22, Yekaterinburg, 620137, RussiaL. N. Maskaeva & V. F. Markov
References
  1. Aleshin, A.N., Burlak, A.V., Mandel’, V.E., et al., Fotonika, 1999, no. 8, pp. 111–114.
  2. Kouissa, S., Djemel, A., Aida, M.S., et al., Sens. Transducers, 2015, vol. 193, no. 10, pp. 106–113.
  3. Shnaider, A.V., Mironov, M.P., Gusel’nikov, A.V., et al., Pozharovzryvobezopasnost’, 2008, vol. 17, no. 2, pp. 74–76.
  4. Markov, V.F., Maskaeva, L.N., Shnaider, A.V., et al., Tekhnosf. Bezopasn., 2015, vol. 1, no. 6, pp. 32–37.
  5. Markov, V.F. and Maskaeva, L.N., J. Anal. Chem., 2001, vol. 56, no. 8, pp. 754–757.
  6. Zarubin, I.V., Markov, V.F., Maskaeva, L.N., et al., J. Anal. Chem., 2017, vol. 72, no. 3, pp. 327–332.
  7. Spivak, Yu.M., Mjakin, S.V., Moshnikov, V.A., et al., J. Nanomater., 2016, vol. 2016, p. 2629582.
  8. Boltovets, N.S., Borisenko, A.G., Ivanov, V.N., et al., Tekhnol. Konstr. Elektron. Appar., 2009, no. 5, pp. 45–48.
  9. Burlakov, I.D., Boltar’, K.O., and Sednev, M.V., Prikl. Fiz., 2007, no. 5, pp. 59–62.
  10. Svetlichnyi, A.M., Spiridonov, O.B., Linets, L.G., et al., Izv. Yuzhn. Fed. Univ., Tekh. Nauki, 2011, no. 4, pp. 102–108.
  11. Barmashov, I., Elektronika: NTB, 2013, no. 2, pp. 143–145.
  12. Khoroshko, L.S., Asharif, A.M., Orekhovskaya, T.I., et al., Dokl. Bel. Gos. Univ. Inform. Radioelektron., 2014, no. 3, pp. 101–105.
  13. Cheng Huai-Yu, Jong Chao-An, Lee Chain-Ming, et al., IEEE Trans. Magn., 2005, vol. 41, no. 2, pp. 1031–1033.
  14. Tomashik, Z.F., Chukhnenko, P.S., Ivanitskaya, V.G., et al., Inorg. Mater., 2012, vol. 48, no. 2, pp. 114–118.
  15. Stepanova, L.I. and Dvorak, A.M. Izv. Nats. Akad. Nauk Bel., Ser. Khim. Nauk, 2012, no. 2, pp. 55–61.
  16. Ignat’ev, A.I. and Tsygankova, E.V., Nauch.-Tekh. Vestn. Inform. Tekhnol., Mekh. Opt., 2006, no. 26, pp. 320–325.
  17. Carns, T.K., Tanner, M.O., and Wang, K.L., J. Electrochem. Soc., 1995, vol. 142, no. 4, pp. 1260–1266.
  18. Stoffel, M., Malachias, A., Merdzhanova, T., et al., Semicond. Sci. Technol., 2008, vol. 23, p. 085021.
  19. Sebaai, F., Witters, L., Holsteyns, F., et al., Solid State Phenom., 2016, vol. 225, pp. 3–7.
  20. Baidakova, N.A., Verbus, V.A., Morozova, E.E., et al., Semiconductors, 2017, vol. 51, no. 12, pp. 1551–1556.
  21. Butler, J.N., Ionic Equilibrium, Boston: Addison-Wesley, 1973.
  22. Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Lur’e, Yu.Yu., Ed., Moscow: Khimiya, 1971.
  23. Goncharov, E.G., Semenova, G.V., and Ugai, Ya.A., Khimiya poluprovodnikov (Chemistry of Semiconductors), Voronezh: Voronezhskii Univ., 1995.
  24. Smirnova, Z.I., Maskaeva, L.N., Markov, V.F., et al., J. Mater. Sci. Techol., 2015, vol. 31, no. 8, pp. 790–797.
  25. Maskaeva, L.N., Forostyanaya, N.A., Markov, V.F., et al., Russ. J. Inorg. Chem., 2015, vol. 60, no. 5, pp. 552–559.
  26. Markov, V.F., Maskaeva, L.N., and Ivanov, P.N., Gidrokhimicheskoe osazhdenie plenok sul’fidov metallov: modelirovanie i eksperiment (Hydrochemical Deposition of Metal Sulfide Films: Simulation and Experiment), Yekaterinburg: Ural’skoe Otdel. Ross. Akad. Nauk, 2006.
  27. Moro, V., Semiconductor Lithography: Principles, Practices, and Materials, New York: Plenum, 1988.