Examples



mdbootstrap.com



 
Статья
2020

Deep Extraction of Fullerene-Containing Carbon Black with a Polar Solvent: Analysis of Products


V. P. SedovV. P. Sedov, A. A. BorisenkovaA. A. Borisenkova, M. V. SuyasovaM. V. Suyasova, D. N. OrlovaD. N. Orlova, A. V. IvanovA. V. Ivanov, S. V. FominS. V. Fomin, A. S. KrivorotovA. S. Krivorotov
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220040072
Abstract / Full Text

A procedure was suggested for highly efficient extraction of fullerenes from electric arc carbon black, with the degree of recovery reaching 86% of the carbon black weight. Analysis by HPLC and by IR and Raman spectroscopy shows that the extracts obtained consist of a mixture of fullerenes. The possibility of preparing highly water-soluble fullerene derivatives from the extracts by hydroxylation with an aqueous solution of hydrogen peroxide was demonstrated.

Author information
  • Konstantinov Institute of Nuclear Physics, Russian Research Center Kurchatov Institute, 188300, Gatchina, RussiaV. P. Sedov, A. A. Borisenkova, M. V. Suyasova, D. N. Orlova & A. S. Krivorotov
  • St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, RussiaA. A. Borisenkova
  • St. Petersburg University of the State Firefighting Service, EMERCOM of Russia, 196105, St. Petersburg, RussiaM. V. Suyasova, A. V. Ivanov & S. V. Fomin
References
  1. Krätschmer, W., Fostiropoulos, K., and Huffman, D.R., Chem. Phys. Lett., 1990, vol. 170, nos. 2–3, pp. 167–170. https://doi.org/10.1016/0009-2614(90)87109-5
  2. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R., Nature, 1990, vol. 347, no. 6291, pp. 354–358. https://doi.org/10.1038/347354a0
  3. Taylor, R., Hare, J.P., Abdul-Sada, A., and Kroto, H.J., J. Chem. Soc., Chem. Commun., 1990, no. 20, pp. 1423–1425. https://doi.org/10.1039/C39900001423
  4. Tsvetkova, L.V., Keskinov, V.A., Charykov, N.A., Alekseev, N.I., Gruzinskaya, E.G., Semenov, K.N., Postnov, V.N., and Krokhina, O.A., Russ. J. Gen. Chem., 2011, vol. 81, no. 5, pp. 920–926. https://doi.org/10.1134/S1070363211050136
  5. Gruzinskaya, E.A., Keskinov, V.A., Keskinova, M.V., Semenov, K.N., and Charykov, N.A., Nanosystems: Phys., Chem., Math., 2012, vol. 3, no. 6, pp. 83–90.
  6. Parker, D.H., Wurz, P., Chatterjee, K., Lykke, K.R., Hunt, J.E., Pellin, M.J., Hemminger, J.C., Gruen, D.M., and Stock, L.M., J. Am. Chem. Soc., 1991, vol. 113, no. 20, pp. 7499–7503. https://doi.org/10.1021/ja00020a008
  7. Solodovnikov, S.P., Tumanskii, B.L., Bashilov, V.V., Lebedkin, S.F., and Sokolov, V.I., Russ. Chem. Bull., 2001, vol. 50, no. 11, pp. 2242–2244. https://doi.org/10.1023/A:1015094527826
  8. Patent RU 0002659972, Publ. 2018.
  9. Prylutskyy, Y., Prylutskyy, Yu.I., Durov, S.S., Bulavin, L.A., Adamenko, I.I., Moroz, K.O., Graja, A., Bogucki, A., and Scharf, P., Fullerene Sci. Technol., 2001, vol. 9, no. 2, pp. 167–174. https://doi.org/10.1081/FST-100102964
  10. Semenov, K.N., Charykov, N.A., Arapov, O.V., Proskurina, O.V., Tarasov, A.Yu., Strogonova, E.N., and Saf’yannikov, N.M., Khim. Rast. Syr’ya, 2010, no. 2, pp. 147–152.
  11. Gallagher, S.H., Armstrong, R.S., Lay, P.A., and Reed, C.A., J. Phys. Chem., 1995, vol. 99, no. 16, pp. 5817–5825. https://doi.org/10.1021/j100016a015
  12. Andrievsky, G.V., Klochkov, V.K., Bordyu, A.B., and Dovbeshko, G.I., Chem. Phys. Lett., 2002, vol. 364, nos. 1–2, pp. 8–17. https://doi.org/10.1016/S0009-2614(02)01305-2
  13. Kareev, I.E., Bubnov, V.P., Laukhina, E.E., Dodonov, A.F., Kozlovski, V.I., and Yagubskii, E.B., Fullerenes, Nanotubes, Carbon Nanostruct., 2004, vol. 12, nos. 1–2, pp. 65–69. https://doi.org/10.1081/FST-120027135
  14. Jao, T.C., Scott, I., and Steele, D., J. Mol. Spectrosc., 1982, vol. 92, no. 1, pp. 1–17. https://doi.org/10.1016/0022-2852(82)90077-7
  15. Khalikov, Sh.Kh., Alieva, S.V., and Sharipova, D.A., Dokl. Akad. Nauk Resp. Tadzh., 2012, vol. 55, no. 8, pp. 652–658.
  16. Ladyanov, V.I., Aksenova, V.V., and Nikonova, R.M., Russ. J. Phys. Chem. A, 2010, vol. 84, no. 9, pp. 1548–1553. https://doi.org/10.1134/S0036024410090190
  17. Aleksashin, V.M., Gunyaev, G.M., Il’chenko, S.I., Lobach, A.S., Komarova, O.A., Sinitsina, N.G., and Antyufeeva, N.V., Nanotekhnika, 2005, vol. 1, no. 4, pp. 89–92.
  18. Konarev, D.V. and Lyubovskaya, R.N., Russ. Chem. Bull., 2008, vol. 57, no. 9, pp. 1944–1954. https://doi.org/10.1007/s11172-008-0261-y
  19. Konarev, D.V. and Lyubovskaya, R.N., Russ. Chem. Rev., 2016, vol. 85, no. 11, pp. 1215–1228. https://doi.org/10.1070/RCR4645
  20. Tuchin, A.V., Kondens. Sredy Mezhfazn. Gran., 2014, vol. 16, no. 3, pp. 323–336.
  21. Light Scattering in Solids VIII: Fullerenes, Semiconductor Surfaces, Coherent Phonons, Cardona, M. and Güntherodt, G., Eds., Berlin: Springer, 2000, pp. 46–47. https://doi.org/10.1007/BFB008423
  22. Bethune, D.S., Meijer, G., Tang, W.C., Rosen, H.J., and de Vries, M.S., Chem. Phys. Lett., 1991, vol. 179, nos. 1–2, pp. 181–186. https://doi.org/10.1016/0009-2614(91)90312-W
  23. Kuzmany, H., Pfeiffer, R., Hulman, M., and Kramberger, C., Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci., 2004, vol. 362, no. 1824, pp. 2375–2406. https://doi.org/10.1098/rsta.2004.1446
  24. Dong, Z.H., Zhou, P., Holden, J.M., Eklund, P.C., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. B, 1993, vol. 48, no. 4, pp. 2862–2865. https://doi.org/10.1103/PhysRevB.48.2862
  25. Denisov, V.N., Mavrin, B.N., Ruani, J., Zamboni, R., and Taliani, K., JETP, 1992, vol. 102, pp. 158–164. .
  26. Davydov, V.A., Kashevarova, L.S., Rakhmanina, A.V., Dzyabchenko, A.V., Senyavin, V.M., and Agafonov, V.N., Ross. Khim. Zh., 2001, vol. 45, no. 4, pp. 25–34.
  27. Goncharova, E.A., Isakova, V.G., Tomashevich, E.V., and Churilov, G.N., Sib. Zh. Nauki Tekhnol., 2009, nos. 1–2, pp. 90–93.
  28. Dawid, A., Górny, K., and Gburski, Z., Spectrochim. Acta, Part A: Mol.Biomol. Spectrosc., 2015, vol. 136, pp. 1993–1997. https://doi.org/10.1016/j.saa.2014.08.023
  29. Dawid, A., Go´rny, K., and Gburski, Z., J. Phys. Chem. C, 2017, vol. 121, no. 4, pp. 2303–2315. https://doi.org/10.1021/acs.jpcc.6b06484
  30. Rivelino, R., Malaspina, T., and Fileti, E.E., Phys. Rev. A, 2009, vol. 79, no. 1, p. 013201. https://doi.org/10.1103/PhysRevA.79.013201
  31. Schettino, V., Pagliai, M., and Cardini, G., J. Phys. Chem. A, 2002, vol. 106, no. 9, pp. 1815–1823. https://doi.org/10.1021/jp012680d
  32. Ståkhandske, C.M., Mink, J., Sandström, M., Pápai, I., and Johansson, P., Vibr. Spectrosc., 1997, vol. 14, no. 2, pp. 207–227. https://doi.org/10.1016/S0924-2031(97)00003-9
  33. Denisov, V.N., Zakhidova, A.A., Ruania, G., Zambonia, R., Taliania, C., Tanaka, K., Yoshizawa, K., Okahara, T., Yamabe, T., and Achiba, Y., Synth. Met., 1993, vol. 56, nos. 2–3, pp. 3050–3056. https://doi.org/10.1016/0379-6779(93)90078-B