Examples



mdbootstrap.com



 
Статья
2022

Synthesis of Optical Nd:(Y,Gd)2O3 Ceramics and Investigation of Its Spectroscopic Characteristics


V. V. OsipovV. V. Osipov, V. A. ShitovV. A. Shitov, D. A. VasinD. A. Vasin, A. V. SpirinaA. V. Spirina, A. S. MakarovaA. S. Makarova, A. N. OrlovA. N. Orlov, R. N. MaksimovR. N. Maksimov
Российский физический журнал
https://doi.org/10.1007/s11182-022-02554-z
Abstract / Full Text

Fabrication of optical ceramics based on solid solution of yttrium and gadolinium sesquioxides activated by Nd3+ ions is considered. Nanopowder of (Nd0.008Y0.496Gd0.496)2O3 synthesized by laser ablation method was used as raw material. It was determined that laser-ablated nanoparticles initially have monoclinic phase, transformation of which into cubic phase starts at a temperature of 1100 °C and is fully completed at 1300°C. It was found that the best transparency of samples (79.9% at the wavelength of 1060 nm) and the lowest content of scattering centers of 2.7 ppm are reached by vacuum sintering of nanopowder previously calcined at 1000°C for 3 h. In the measured photoluminescence spectrum, a blue-shift of Nd3+ emission bands in (Y,Gd)2O3 matrix with respect to Y2O3 was observed. Broadening of emission bands and their partial overlap was determined suggesting the change in the local environment of neodymium embedded into positions of yttrium and gadolinium.

Author information
  • Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, RussiaV. V. Osipov, V. A. Shitov, D. A. Vasin, A. V. Spirina, A. S. Makarova, A. N. Orlov & R. N. Maksimov
  • Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, RussiaD. A. Vasin & R. N. Maksimov
References
  1. D. Modena, A. Miranda, C. Grecco, et al., Lasers Med. Sci., 35, No. 4, 797−806 (2020).
  2. G. D. Gautam and A. K. Pandey, Opt. Laser Technol, 100, 183–215 (2018).
  3. D. He, S. Kang, L. Zhang, et al., High Power Laser Sci. Eng, 5, 1−6 (2017). DOI: https://doi.org/10.1017/hpl.2016.46.
  4. M. Saleh, S. Kakkireni, J. McCloy, and K. G. Lynn, Opt. Mater. Express, 10, No. 2, 632−644 (2020).
  5. M. O. Ramirez, J. Wisdom, H. Li, et al., Opt. Express, 16, No. 9, 5965−5973 (2008).
  6. K. Hetherin, S. Ramesh, and Y. H. Wong, J. Mater. Sci. Mater. Electron, 28, No. 16, 11994−12003 (2017).
  7. R. K. Tamrakar, D. P. Bisen, and N. Brahme, J. Radiat. Res. Appl. Sci, 7, No. 4, 550−559 (2014).
  8. M. Zinkevich, Prog. Mater. Sci, 52, No. 4, 597−647 (2007).
  9. L. S. Qin, Y. T. Wu, H. S. Shi, et al., IEEE Trans. Nucl. Sci, 56, No. 5, 2979−2982 (2009).
  10. T. Feng, J. L. Shi, H. F. Xu, and D. Y. Jiang, Key Eng. Mater, 368−372, 432−434 (2018).
  11. V. V. Osipov, V. V. Platonov, V. V. Lisenkov, et al., Phys. Status Solidi C, 10, No. 6, 926−932 (2013).
  12. A. Pirri, G. Toci, B. Patrizi, et al., J. Alloys Compd, 869, 159227−159235 (2021).
  13. A. A. Kaminski, K. Ueda, A. F. Konstantinova, et al., Crystallogr. Rep, 48, 1041−1043 (2003).
  14. X. Chen, J. Phys. Chem. C, 111, No. 32, 12135−12136 (2007).