Examples



mdbootstrap.com



 
Статья
2017

Ionization Waves During the Subnanosecond Breakdown Initiated by Runaway Electrons in High-Pressure Nitrogen and Air


D. V. BeloplotovD. V. Beloplotov, M. I. LomaevM. I. Lomaev, D. A. SorokinD. A. Sorokin, V. F. TarasenkoV. F. Tarasenko
Российский физический журнал
https://doi.org/10.1007/s11182-017-1213-5
Abstract / Full Text

The experimental investigations of a subnanosecond breakdown initiated by runaway electrons in air and nitrogen at the pressures within 0.013–0.4 MPa are performed. The temporal development patterns of the discharge plasma glow in different regions of the discharge gap are registered with a fast photodiode, a four-channel ICCD-camera, and an ultrafast streak camera. It is shown that the breakdown occurs in the form of ionization waves propagating from the electrode with a small radius of curvature. It is found that a runaway electron beam behind the anode foil at the nitrogen and air pressure ~0.1 MPa is detected with the collector at the point of time corresponding to the maximum gap voltage.

Author information
  • Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaD. V. Beloplotov, M. I. Lomaev, D. A. Sorokin & V. F. Tarasenko
References
  1. Runaway Electrons Preionized Diffuse Discharges (Ed. V. F. Tarasenko), Nova Science Publishers, Inc., N. Y. (2014).
  2. Generation of Runaway Electrons and X-Ray Radiation in Elevated-Pressure Discharges (Ed. V. F. Tarasenko), Tomsk, STT (2015).
  3. Generation of Runaway Electron Beams and X-Rays in High Pressure Gases. V. 1. Techniques and Measurements; Volume 2. Processes and Applications (Ed. V. F. Tarasenko), Nova Science Publishers, Inc., N. Y. (2016).
  4. L. M. Vasilyak, S. P. Vetchinin, and D. N. Polyakov, Tech. Phys. Lett., 25, Iss. 18, 749 (1999).
  5. S. Pancheshnyi, M. Nudnova, and A. Starikovskii, Phys. Rev. E, 71, Iss. 1, 016407 (2005).
  6. D. Wang, M. Jikuya, S. Yoshida, et al., IEEE Trans. Plasma Sci., 35., Iss. 4, 1098–1103 (2007).
  7. D. Z. Pai, G. D. Stancu, D. A. Lacoste, and C. O. Laux, Plasma Sources Sci. Technol., 18, Iss. 4, 045030, (2009).
  8. S. Yatom, V. Vekselman, J. Z.Gleizer, and Ya. E. Krasik, J. Appl. Phys., 109, 073312. (2011).
  9. M. I. Lomaev, D. V. Beloplotov, V. F. Tarasenko, and D. A. Sorokin, IEEE Trans. Dielectr. Electric. Insulat., 22, Iss. 4, 1833–1840 (2015).
  10. V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep., 41, No. 10, 832–846 (2015).
  11. P. Tardiveau, L. Magne, E. Marode, et al., Plasma Sources Sci. Technol., 25, Iss. 5, 054005 (2016).