Статья
2019

Construction of ZIF-8/AuNPs/PVP–rGO/GCE Electrochemical Sensor and Its Sensitive Determination of Salbutamol


 Shuhong Sun Shuhong Sun , Ruichi Zhao Ruichi Zhao , Wenwen Hao Wenwen Hao , Huimei Guo Huimei Guo , Lei Shi Lei Shi , Xiaoou Su Xiaoou Su
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519030091
Abstract / Full Text

An excellent electrochemical sensor based on glassy carbon electrode (GCE) modified in order with polyvinyl pyrrolidone-dispersed reduced graphene oxide (PVP–rGO), gold nanoparticles (AuNPs) and metal-organic framework material of ZIF-8 was fabricated for the highly sensitive determination of salbutamol (SAL). The modified materials and electrodes were characterized and investigated by X-ray diffraction (XRD), fourier transform infrared (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron dispersive X-ray (EDX), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that ZIF-8/AuNPs/PVP–rGO/GCE exhibited a superior performance with a high sensitivity and selectivity as well as a satisfied stability and reproducibility for the determination of SAL because the self-assembled sensor was possessed of a large number of pores to promote the adsorption of SAL on its surface and offered the electron transfer environment to speed the electrochemical redox reaction of SAL remarkably. The SAL determination limit was as low as 1.00 × 10–12 mol/L under the optimum conditions with a linear range from 1.00 × 10–12 to 5.00 × 10–9 mol/L and a correlation coefficient (R) of 0.9985. Based on SAL electrochemical redox process of one-proton and one-electron involved, the possible redox mechanism of SAL on ZIF‑8/AuNPs/PVP–rGO/GCE was proposed. Furthermore, the electrochemical sensor was used for the detection of SAL in real pork samples and a well-pleasing result was achieved.

Author information
  • College of Chemistry and Chemical Engineering, Liaoning Normal University, 116029, Dalian, China

    Shuhong Sun, Ruichi Zhao, Wenwen Hao, Huimei Guo & Lei Shi

  • Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, 100081, Beijing, China

    Xiaoou Su

References
  1. Crescenzi, C., Bayoudh, S., Cormack, P.A.G., Klein, T., and Ensing, K., Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry, Anal. Chem., 2001, vol. 73, pp. 2171–2177. https://doi.org/10.1021/ac0014360
  2. Martinez-Navarro, J.F., Food poisoning related to consumption of illicit β-agonist in liver, Lancet, 1990, vol. 336, pp. 1311–1311. https://doi.org/10.1016/0140-6736(90)92990-Y
  3. Jin, O.Y., Duan, J.L., Baeyens, W.R.G., and Delanghe, J.R., A simple method for the study of salbutamol pharmacokinetics by ion chromatography with direct conductivity detection, Talanta, 2005, vol. 65, pp. 1–6. https://doi.org/10.1016/j.talanta.2004.01.026
  4. Taylor, D.M., Joffe, P., Taylor, S.E., Jones, A., Cheek, J.A., Craig, S.S., Graudins, A., Dhir, R., Krieser, D., and Babl, F.E., Off-label and unlicenced medicine administration to paediatric emergency department patients, Emerg. Med. Australas., 2015, vol. 27, pp. 440–446. https://doi.org/10.1111/1742-6723.12431
  5. Cui, Z.T., Cai, Y.Y., Wu, D., Yu, H.Q., Li, Y., Mao, K.X., Wang, H., Fan, H.X., Wei, Q., and Du, B., An ultrasensitive electrochemical immunosensor for the detection of salbutamol based on Pd@SBA–15 and ionic liquid, Electrochim. Acta, 2012, vol. 69, pp. 79–85. https://doi.org/10.1016/j.electacta.2012.02.073
  6. Sairi, M. and Arrigan, D.W.M., Electrochemical detection of ractopamine at arrays of micro-liquid interfaces, Talanta, 2015, vol. 132, pp. 205–214. https://doi.org/10.1016/j.talanta.2014.08.060
  7. Chen, D., Yang, M., Zheng, N.J., Xie, N., Liu, D.L., Xie, C.F., and Yao, D.S., A novel aptasensor for electrochemical detection of ractopamine, clenbuterol, salbutamol, phenylethanolamine and procaterol, Biosens. Bioelectron., 2016, vol. 80, pp. 525–531. https://doi.org/10.1016/j.bios.2016.01.025
  8. Shi, L.B., Zhu, X., Liu, T.T., Zhao, H.L., and Lan, M.B., Encapsulating Cu nanoparticles into metal-organic frameworks fornonenzymatic glucose sensing, Sens. Actuators B Chem., 2016, vol. 227, pp. 583–590. https://doi.org/10.1016/j.snb.2015.12.092
  9. Yao, S., Hu, Y.F., Li, G.K., and Zhang, Y.K., Adsorption behavior of ractopamine on carbon nanoparticle modified electrode and its analytical application, Electrochim. Acta, 2012, vol. 77, pp. 83–88. https://doi.org/10.1016/j.electacta.2012.05.078
  10. Rychagov, A.Yu., Gubin, S.P., Chuprov, P.N., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., Voronov, V.A., and Tkachev, S.V., Electrochemical reduction and electric conductivity of graphene oxide films, Russ. J. Electrochem., 2017, vol. 53, pp. 721–727. https://doi.org/10.1134/S1023193517070102
  11. Zhang, Y., Zhang, M.Q., Wei, Q.H., Gao, Y.J., Guo, L.J., Al-Ghanim, K.A., Mahboob, S., and Zhang, X.J., An easily fabricated electrochemical sensor based on a graphene-modified glassy carbon electrode for determination of octopamine and tyramine, Sensors, 2016, vol. 16, pp. 535–549. https://doi.org/10.3390/s16040535
  12. Liu, Q., Zhu, X., Huo, Z.H., He, X.L., Liang, Y., and Xu, M.T., Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes, Talanta, 2012, vol. 97, pp. 557–562. https://doi.org/10.1016/j.talanta.2012.05.013
  13. Mashhadizadeh, M.H. and Talemi, R.P., Multilayer film of thiourea and gold nanoparticles as an effective platform for immobilization of activated non-labeled-DNA and construction of an ultrasensitive electrochemical DNA biosensor, Russ. J. Electrochem., 2016, vol. 52, pp. 154–162. https://doi.org/10.1134/S1023
  14. Kim, S.H., Nanoporous gold: preparation and applications to catalysis and sensors, Curr. Appl. Phys., 2018, vol. 18, no. 7, pp. 810–818. https://doi.org/10.1016/j.cap.2018.03.021
  15. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Fakhari, A.R., and Amini, M.M., Au–SH–SiO2 nanoparticles supported on metal-organic framework (Au–SH–SiO2@Cu–MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine, Electrochimi. Acta, 2013, vol. 88, pp. 301–309. https://doi.org/10.1016/j.electacta.2012.10.064
  16. Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., and Yaghi, O.M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Nati. Acad. Sci., 2006, vol. 103, pp. 10186–10191. https://doi.org/10.1073/pnas.0602439103
  17. Stackhouse, C.A. and Ma, S.Q., Azamacrocyclic-based metal organic frameworks: design strategies and applications, Polyhedron, 2018, vol. 145, pp. 154–165. https://doi.org/10.1016/j.poly.2018.01.036
  18. Lu, G. and Hupp, J.T., Metal-organic frameworks as sensors: A ZIF-8 Fabry–Pérot device as a selective sensor for chemical vapors and gases, J. Amer. Chem. Soc., 2010, vol. 132, pp. 7832–7833. https://doi.org/10.1021/ja101415b
  19. Samadi-Maybodi, A., Ghasemi, S., and Ghaffari-Rad, H., Ag-doped zeolitic imidazolate framework-8 nanoparticles modified CPE for efficient electrocatalytic reduction of H2O2, Electrochim. Acta, 2015, vol. 163, pp. 280–287. https://doi.org/10.1016/j.electacta.2015.02.129
  20. Gao, Y.L., Wu, J.X., Zhang, W., Tan, Y.Y., Zhao, J.C., and Tang, B.J., The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks–8 (ZIF–8) composite material for supercapacitors, Mater. Lett., 2014, vol. 128, pp. 208–211. https://doi.org/10.1016/j.matlet.2014.04.175
  21. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G., Processable aqueous dispersions of graphene nanosheets, Nat. Nano, 2008, vol. 3, pp. 101–105. https://doi.org/10.1038/nnano.2007.451
  22. Guo, S.J., Dong, S.J., and Wang, E., Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation, ACS Nano, 2010, vol. 4, pp. 547–555. https://doi.org/10.1021/nn9014483
  23. Tran, U.P.N., Le, K.K.A., and Phan, N.T.S., Expanding applications of metal–organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction, ACS Catal., 2011, vol. 1, pp. 120–127. https://doi.org/10.1021/cs1000625
  24. Ye, X.L., Gu, Y.G., and Wang, C.M., Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat, Sens. Actuators B Chem., 2012, vol. 173, pp. 530–539. https://doi.org/10.1016/j.snb.2012.07.047
  25. Nasirpouri, F., Pourmahmoudi, H., Abbasi, F., Littlejohn, S., Chauhan, A.S., and Nogaret, A., Modification of chemically exfoliated graphene to produce efficient piezoresistive polystyrene-graphene composites, J. Electron. Mater., 2015, vol. 44, pp. 3512–3522. https://doi.org/10.1007/s11664-015-3799-0
  26. Uddin, E.Md., Layek, K.R., Kim, H.N., Hui, D., and Lee, H.J., Preparation and properties of reduced graphene oxide/polyacrylonitrile nanocomposites using polyvinyl phenol, Composites, 2015, vol. 80, pp. 238–245. https://doi.org/10.1016/j.compositesb.2015.06.009
  27. Zhang, W.J., Li, Y.J., Zhang, X.X., and Li, C.L., Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol, J. Solid State Chem., 2017, vol. 253, pp. 47–51. https://doi.org/10.1016/j.jssc.2017.05.022
  28. Jomekian, A., Behbahani, R.M., Mohammadi, T., and Kargari, A., Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8, J. Solid State Chem., 2016, vol. 235, pp. 212–216. https://doi.org/10.1016/j.jssc.2016.01.004
  29. Jayashree, E., Francesca, B., Carlo, L., and Silvia, B., H2S interaction with HKUST-1 and ZIF-8 MOFs: a multitechnique study, Microporous Mesoporous Mater., 2015, vol. 207, pp. 90–94. https://doi.org/10.1016/j.micromeso.2014.12.034
  30. Liu, J.X., Li, R., Hu, Y.Y., Li, T., Jia, Z.H., Wang, Y.F., Wang, Y.W., Zhang, X.C., and Fan, C.M., Harnessing Ag nanofilm as an electrons transfer mediator for enhanced visible light photocatalytic performance of Ag@AgCl/Ag nanofilm/ZIF-8 photocatalyst, Appl. Catal. B, 2017, vol. 202, pp. 64–71. https://doi.org/10.1016/j.apcatb.2016.09.015
  31. Lu, W.B., Ning, R., Qin, X.Y., Zhang, Y.W., Chang, G.H., Liu, S., Luo, Y.L., and Sun, X.P., Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEE 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol, J. Hazard. Mater., 2011, vol. 197, pp. 320–326. https://doi.org/10.1016/j.jhazmat.2011.09.092
  32. Gong, J.M., Zhou, T., Song, D.D., and Zhang, L.Z., Monodispersed Au nanoparticles decorated graphene as an enhanced sensing platform for ultrasensitive stripping voltammetric detection of mercury(II), Sens. Actuators B Chem., 2010, vol. 150, pp. 491–497. https://doi.org/10.1016/j.snb.2010.09.014
  33. Dong, S.Y., Zhang, P.H., Liu, H., Li, N., and Huang, T.L., Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies, Biosens. Bioelectron., 2011, vol. 26, pp. 4082–4087. https://doi.org/10.1016/j.bios.2011.03.039
  34. Laviron, E., Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry, J. Electroanal. Chem., 1974, vol. 52, pp. 355–393. https://doi.org/10.1016/S0022-0728(74)80448-1
  35. Karuwan, C., Wisitsoraat, A., Maturos, T., Phokharatkul, D., Sappat, A., Jaruwongrungsee, K., Lomas, T., and Tuantranont, A., Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection, Talanta, 2009, vol. 79, pp. 995–1000. https://doi.org/10.1016/j.talanta.2009.02.015
  36. Karuwan, C., Sriprachuabwong, C., Wisitsoraat, A., Phokharatkul, D., Sritongkham, P., and Tuantranont, A., Inkjet-printed graphene-poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonate) modified on screen printed carbon electrode for electrochemical sensing of salbutamol, Sens. Actuators B Chem., 2012, vol. 161, pp. 549–555. https://doi.org/10.1016/j.snb.2011.10.074
  37. Lin, X.Y., Ni, Y.N., and Kokot, S., A novel electrochemical sensor for the analysis of β-agonists: the poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode, J. Hazard. Mater., 2013, vol. 260, pp. 508–517. https://doi.org/10.1016/j.jhazmat.2013.06.004
  38. Lin, K.C., Hong, C.P., and Chen, S.M., Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes, Sens. Actuators B Chem., 2013, vol. 177, pp. 428–436. https://doi.org/10.1016/j.snb.2012.11.052
  39. Huang, J.D., Lin, Q., Zhang, X.M., He, X.R., Xing, X.R., Lian, W.J., Zuo, M.M., and Zhang, Q.Q., Electrochemical immunosensor based on polyaniline/poly (acrylic acid) and Au-hybrid graphene nanocomposite for sensitivity enhanced detection of salbutamol, Food Res. Int., 2011, vol. 44, pp. 92–97. https://doi.org/10.1016/j.foodres.2010.11.006
  40. Alizadeh, T. and Fard, L.A., Synthesis of Cu2+-mediated nano-sized salbutamol-imprinted polymer and its use for indirect recognition of ultra-trace levels of salbutamol, Anal. Chim. Acta, 2013, vol. 769, pp. 100–107. https://doi.org/10.1016/j.aca.2013.01.032