Examples



mdbootstrap.com



 
Статья
2020

Methyl (S)-(5-methylidene-4-oxocyclopent-2-en-1-yl)acetate as a readily available pharmacologically important subunit of cross-conjugated cyclopentenone prostaglandins


N. S. VostrikovN. S. Vostrikov, Z. R. MakaevZ. R. Makaev, V. V. ZagitovV. V. Zagitov, F. A. LakhvichF. A. Lakhvich, F. S. PashkovskyF. S. Pashkovsky, M. S. MiftakhovM. S. Miftakhov
Российский химический вестник
https://doi.org/10.1007/s11172-020-2796-5
Abstract / Full Text

A short and convenient synthesis of exomethylidenecyclopentenone core of cyclopentenone prostaglandins (+)−3 from (−) Corey lactone diol is described. The chiral 5-phenylthio and 5-phenylsulfonyl derivatives of exomethylidenecyclopentenone were obtained and their cytotoxic properties were studied in comparison with the synthesized earlier ethylthio and ethylsulfonyl derivatives of (±)−3, announced as its more stable bioisosteres.

Author information
  • Ufa Institute of Chemistry, Ufa Federal Scientific Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054, Ufa, Russian FederationN. S. Vostrikov, Z. R. Makaev, V. V. Zagitov & M. S. Miftakhov
  • Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, BelarusF. A. Lakhvich & F. S. Pashkovsky
References
  1. A. A. Stavrovskaya, G. P. Gens, Uspekhi molekulyarnoy onkologii [Advances in Molecular Oncology], 2014, 1, 5; DOI: https://doi.org/10.17650/2313-805X.2014.1.1.5-11.
  2. J. L. T. S. Ahmed, Ch. Xu, B. M. Stoltz, R. H. Grubbs, J. Am. Chem. Soc., 2019, 141, 154; DOI: https://doi.org/10.1021/jacs.8b12816.
  3. A. Pelšs, N. Gandhamsetty, J. R. Smith, D. Mailhol, M. Silv, A. J. A. Watson, I. Perez-Powell, S. Prevost, N. Schutzenmeister, P. R. Moore, V. K. Aggarwal, Chem. Eur. J., 2018, 24, 9542; DOI: https://doi.org/10.1002/chem.201802498.
  4. K. C. Nicolaou, S. Rigol, Acc. Chem. Res., 2019, 52, 127; DOI: https://doi.org/10.1021/acs.accounts.8b00537.
  5. K. K. Nicolaou, K. K. Pulukur, S. Rigol, Z. Peitsinis, R. Yu, S. Kishigam, N. Cen, M. Aujay, J. Sandoval, N. Zepeda, J. Gavrilyuk, J. Org. Chem., 2019, 84, 365; DOI: https://doi.org/10.1021/acs.joc.9b00159.
  6. V. V. Loza, A. M. Gimazetdinov, M. S. Miftakhov, Russ. J. Org. Chem. (Engl. Transl.), 2018, 54, 1585; DOI: https://doi.org/10.1134/S1070428018110015.
  7. S. Hegde, N. Kaushal, K. C. Ravindra, C. Chiaro, K. T. Hafer, U. H. Gandh, J. T. Thompson, J. P. Van den Heuvel, M. J. Kennett, P. Hankey, R. F. Paulson, K. S. Prabhu, Blood., 2011, 118, 6909; DOI: https://doi.org/10.1182/blood-2010-11-317750.
  8. K. Uchida, T. Shibata, Chem. Res. Toxicol., 2008, 21, 138; DOI: https://doi.org/10.1021/tx700177j.
  9. M. Suzuk, M. Mor, T. Niwa, R. Hirata, K. Furuta, T. Ishikawa, R. Noyor, J. Am. Chem. Soc., 1997, 119, 2376; DOI: https://doi.org/10.1021/ja9628359.
  10. A. M. Gimazetdinov, L. A. Khalfitdinova, M. S. Miftakhov, Mendeleev Commun., 2013, 23, 321; DOI: https://doi.org/10.1016/j.mencom.2013.11.005.
  11. N. S. Vostrikov, L. V. Spirikhin, A. N. Lobov, A. M. Gimazetdinov, Z. R. Zileeva, Yu. V. Vakhitova, Z. R. Macaev, K. K. Pivnitsky, M. S. Miftakhov, Mendeleev Commun., 2019, 29, 372; DOI: https://doi.org/10.1016/j.mencom.2019.07.003.
  12. I.-K. Kim, J.-H. Lee, H.-W. Sohn, H.-S. Kim, S.-H. Kim, FEBS Lett., 1993, 321, 209; DOI: https://doi.org/10.1016/0014-5793(93)80110-G.
  13. S. M. Verbitsk, J. E. Mullally, F. A. Fitzpatrick, C. M. Ireland, J. Med. Chem., 2004, 47, 2062; DOI: https://doi.org/10.1021/jm030448l.
  14. K. C. Nicolaou, K. K. Pulukur, S. Rigol, P. Heretsch, R. Yu, C. I. Grove, C. R. H. Hale, A. ElMarroun, V. Fetz, M. Bronstrup, M. Aujay, J. Sandoval, J. Gavrilyuk, J. Am. Chem. Soc., 2016, 138, 6550; DOI: https://doi.org/10.1021/jacs.6b02075.
  15. N. S. Vostrikov, I. F. Lobko, L. V. Spirikhin, Yu. V. Vakhitova, K. K. Pivnitsky, M. S. Miftakhov. Mendeleev Commun., 2017, 27, 125; DOI: https://doi.org/10.1016/j.mencom.2017.03.005.