Examples



mdbootstrap.com



 
Статья
2020

Thermodynamics of Adsorption in a Cellulose–Water System


Yu. B. GruninYu. B. Grunin, M. S. IvanovaM. S. Ivanova, D. S. MasasD. S. Masas, L. Yu. GruninL. Yu. Grunin
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420040056
Abstract / Full Text

The sorption properties of native cellulose and the state of water adsorbed by its fibers are studied by measuring 1H NMR relaxation. A scheme of the supramolecular organization of cellulose microfibrils is proposed. A model of the monomolecular adsorption of water on the hydrophilic surface of cellulose is developed that considers the spatial arrangement of active sites and the characteristics of the formation of hydrogen bonds. A relationship between the pure heat of water adsorption on cellulose and the spin–spin relaxation times in layers of strongly bound water is established. A technique is proposed for determining the adsorption equilibrium constant, change in entropy, and surface tension at a solid–liquid interface.

Author information
  • Volga State University of Technology, 424000, Yoshkar-Ola, Republic of Mari El, RussiaYu. B. Grunin, M. S. Ivanova, D. S. Masas & L. Yu. Grunin
References
  1. R. M. Brown, J. Polym. Sci., Part A 42, 487 (2004).
  2. A. D. French, Cellulose 24, 4605 (2017).
  3. Z. A. Rogovin, Cellulose Chemistry (Khimiya, Moscow, 1972) [in Russian].
  4. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).
  5. Ya. V. Gerasimov, V. P. Dreving, E. H. Eremin, et al., A Course of Physical Chemistry (Khimiya, Moscow, 1964), Vol. 1 [in Russian].
  6. Yu. B. Grunin, L. Yu. Grunin, D. S. Masas, V. I. Talantsev, and N. N. Sheveleva, Russ. J. Phys. Chem. A 90, 2249 (2016).
  7. L. Yu. Grunin, Yu. B. Grunin, V. I. Talantsev, E. A. Nikolskaya, and D. S. Masas, Polym. Sci., Ser. A 57, 43 (2015).
  8. www.nmr-design.com.
  9. A. Abragam, The Principles of Nuclear Magnetism (Oxford Univ. Press, Oxford, 1961).
  10. V. I. Chizhik, Nuclear Magnetic Relaxation (SPbGU, St. Petersburg, 2004) [in Russian].
  11. Yu. B. Grunin, L. Yu. Grunin, V. I. Talantcev, E. A. Nikolskaya, and D. S. Masas, Biophysics 60, 43 (2015).
  12. L. Y. Grunin, Y. B. Grunin, E. A. Nikolskaya, N. N. Sheveleva, and I. A. Nikolaev, Biophysics 62, 198 (2017).
  13. Yu. B. Grunin, L. Yu. Grunin, L. S. Gal’braikh, et al., Khim. Volokna, No. 5, 31 (2017).
  14. Y. B. Grunin, L. Y. Grunin, E. A. Nikolskaya, and V. I. Talantsev, Polymer Sci., Ser. A 54, 201 (2012).
  15. N. C. Carpita, Plant Physiol. 155, 171 (2011).
  16. Y. Nishiyama, J. Wood Sci. 55, 241 (2009).
  17. Yu. B. Grunin, L. Yu. Grunin, E. A. Nikolskaya, V. I. Talantsev, and G. Sh. Gogelashvili, Russ. J. Phys. Chem. A 87, 100 (2013).
  18. R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
  19. Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikolskaya, Russ. J. Phys. Chem. A 81, 1165 (2007).
  20. I. V. Savel’ev, Course of Physics, Vol. 2: Electricity. Oscillations and Waves, Wave Optics, The Manual (Lan’, St. Petersburg, 2007) [in Russian].