Examples



mdbootstrap.com



 
Статья
2020

Influence of the steric properties of pyridine ligands on the structure of complexes containing the {LnCd2(bzo)7} fragment


M. A. ShmelevM. A. Shmelev, Yu. K. VoroninaYu. K. Voronina, N. V. GogolevaN. V. Gogoleva, A. A. SidorovA. A. Sidorov, M. A. KiskinM. A. Kiskin, F. M. DolgushinF. M. Dolgushin, Yu. V. NelyubinaYu. V. Nelyubina, G. G. AleksandrovG. G. Aleksandrov, E. A. VaraksinaE. A. Varaksina, I. V. TaydakovI. V. Taydakov, I. L. EremenkoI. L. Eremenko
Российский химический вестник
https://doi.org/10.1007/s11172-020-2934-0
Abstract / Full Text

The reaction of Cd(NO3)2 · 4H2O and Eu(NO3)3 · 6H2O or Tb(NO3)3 · 6H2O with potassium 3,5-di-tert-butylbenzoate (Kbzo) and N-donor ligands (1,10-phenanthroline (phen), 2,4-lutidine (2,4-lut), 3,4-lutidine (3,4-lut), phenanthridine (phtd), 2,3-cyclododecenopyridine (cdpy), acridine (acr)) afforded heterometallic LnCd2 complexes: [EuCd2(bzo)7(EtOH)2(phen)] (2), [LnCd2(bzo)7(2,4-lut)4] (Ln = Eu (3), Tb (4)), [EuCd2(bzo)7(H2O)2(2,4-lut)2] · MeCN (5), [EuCd2(NO3)(bzo)6(EtOH)2(2,4-lut)2] (6), [EuCd2(bzo)7(H2O)(EtOH)(3,4-lut)2] · 5EtOH (7), 3[EuCd2(bzo)7(H2O)2(phtd)2] · 4phtd (8), [EuCd2(bzo)7(EtOH)3(cdpy)] (9), 2[EuCd2-(bzo)2(EtOH)4] · acr (10). The structures of complexes 2, 3, and 5–10 were determined by single-crystal X-ray diffraction. The isostructurality of complexes 3 and 4 was confirmed by powder X-ray diffraction. The structure of the trinuclear {Ln2Cd} metal core is stable and independent of the type of peripheral ligands coordinated to cadmium atoms. Photoluminescent properties of compounds 3 and 4 were studied.

Author information
  • N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991, Moscow, Russian FederationM. A. Shmelev, Yu. K. Voronina, N. V. Gogoleva, A. A. Sidorov, M. A. Kiskin, G. G. Aleksandrov & I. L. Eremenko
  • A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991, Moscow, Russian FederationF. M. Dolgushin, Yu. V. Nelyubina, E. A. Varaksina & I. V. Taydakov
  • P. N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky prosp., 119333, Moscow, Russian FederationE. A. Varaksina & I. V. Taydakov
  • Moscow Institute of Physics and Technology, 9 Institutskiy per., 141700, Dolgoprudny, Moscow region, Russian FederationI. V. Taydakov
References
  1. Z. Dobrokhotova, A. Emelina, A. Sidorov, G. Aleksandrov, M. Kiskin, P. Koroteev, M. Bykov, M. Fazylbekov, A. Bogomyakov, V. Novotortsev, I. Eremenko, Polyhedron, 2011, 30, 132; DOI: https://doi.org/10.1016/j.poly.2010.09.040.
  2. A. E. Goldberg, S. A. Nikolaevskii, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2015, 41, 707; DOI: https://doi.org/10.1134/S1070328415120015.
  3. Y. Cui, X. Zhang, F. Zheng, J. Ren, G. Chen, Y. Qian, J. Huang, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2000, 56, 1198; DOI: https://doi.org/10.1007/s11172-016-1281-7.
  4. M. A. Kiskin, Zh. V. Dobrokhotova, A. S. Bogomyakov, S. A. Kozyukhin, V. Yu. Timoshenko, I. L. Eremenko, Russ. Chem. Bull., 2016, 65, 1488; DOI: https://doi.org/10.1007/s11172-016-1475-z.
  5. Y. Li, Q. Shang, Y. Q. Zhang, E. C. Yang, X. J. Zhao, Chem.-Eur. J., 2016, 22, 18840; DOI: https://doi.org/10.1002/chem.201603800.
  6. N. Gogoleva, E. Zorina-Tikhonova, G. Aleksandrov, A. Lermontov, N. Efimov, A. Bogomyakov, E. Ugolkova, S. Kolotilov, A. Sidorov, V. Minin, V. Novotortsev, I. Eremenko, J. Cluster Sci., 2015, 26, 137; DOI: https://doi.org/10.1007/s10876-014-0740-2.
  7. A. Goldberg, M. Kiskin, O. Shalygina, S. Kozyukhin, Z. Dobrokhotova, S. Nikolaevskii, A. Sidorov, S. Sokolov, V. Timoshenko, A. Goloveshkin, I. Eremenko, Chem. Asian J., 2016, 11, 604; DOI: https://doi.org/10.1002/asia.201501315.
  8. C. Escobedo-Martinez, M. C. Lozada, D. Gnecco, R. G. Enriquez, M. Soriano-Garcia, W. F. Reynolds, J. Chem. Cryst., 2012, 42, 794; DOI: https://doi.org/10.1007/s11172-016-1281-7.
  9. A. A. Sapianik, E. N. Zorina-Tikhonova, M. A. Kiskin, D. G. Samsonenko, K. A. Kovalenko, A. A. Sidorov, I. L. Eremenko, D. N. Dybtsev, A. J. Blake, S. P. Argent, M. Schroder, V. P. Fedin, Inorg. Chem., 2017, 56, 1599; DOI: https://doi.org/10.1021/acs.inorgchem.6b02713.
  10. N. V. Gogoleva, M. A. Shmelev, I. S. Evstifeev, S. A. Nikolaevsky, G. G. Aleksandrov, M. A. Kiskin, Zh. V. Dobrokhotova, A. A. Sidorov, I. L. Eremenko, Russ. Chem. Bull., 2016, 65, 181; DOI: 1066-5285/16/6501-0181.
  11. M. A. Shmelev, N. V. Gogoleva, F. M. Dolgushin, K. A. Lysenko, M. A. Kiskin, E. V. Varaksina, I. V. Taidakov, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2020, 46, 493.
  12. M. A. Shmelev, N. V. Gogoleva, D. A. Makarov, M. A. Kiskin, I. A. Yakushev, F. M. Dolgushin, G. G. Aleksandrov, E. A. Varaksina, I. V. Taidakov, E. V. Aleksandrov, A. A. Sidorov, I. L. Eremenko, Russ. J. Coord. Chem., 2020, 46, 3; DOI: https://doi.org/10.1134/S1070328420010078.
  13. B. Wu, W. M. Lu, F. F. Wu, X. M. Zheng, Transition Met. Chem., 2003, 28, 694; DOI: https://doi.org/10.1023/A:1025428005520.
  14. J. C. G. Bünzli, S. V. Eliseeva, Chem. Sci., 2013, 4, 1939; DOI: https://doi.org/10.1039/C3SC22126A.
  15. M. Tropiano, A. M. Kenwright, S. Faulkner, Chem. Eur. J., 2015, 21, 5697; DOI: https://doi.org/10.1002/chem.201500188.
  16. V. V. Utochnikova, N. P. Kuzmina, Russ. J. Coord. Chem., 2016, 42, 679; DOI: https://doi.org/10.7868/S0132344X16090073.
  17. E. N. Egorov, E. A. Mikhaleva, M. A. Kiskin, V. V. Pavlishchuk, A. A. Sidorov, I. L. Eremenko, Russ. Chem. Bull., 2013, 62, 2141; DOI: https://doi.org/10.1007/s11172-013-0313-9.
  18. M. A. Bykov, A. L. Emelina, E. V. Orlova, M. A. Kiskin, G. G. Aleksandrov, A. S. Bogomyakov, Zh. V. Dobrokhotova, V. M. Novotortsev, I. L. Eremenko, Russ. J. Inorg. Chem., 2009, 54, 601; DOI: https://doi.org/10.1134/S003602360904010X.
  19. I. G. Fomina, Zh. V. Dobrokhotova, G. G. Aleksandrov, A. S. Bogomyakov, V. M. Novotortsev, I. L. Eremenko, Russ. Chem. Bull., 2010, 59, 1150; DOI: https://doi.org/10.1007/s11172-010-0220-2.
  20. P. Rajakannu, D. Kaleeswaran, S. Banerjee, R. J. Butcher, R. Murugavel, Inorg. Chim. Acta, 2019, 486, 283; DOI: https://doi.org/10.1016/j.ica.2018.10.054.
  21. G. L. Zhang, Y. L. Zheng, J. Qiao, L. D. Wang, Y. Qiu, Z. Kristallogr.-New Cryst. Struct., 2013, 228, 403; DOI: https://doi.org/10.1524/ncrs.2013.0210.
  22. N. V. Gogoleva, M. A. Shmelev, M. A. Kiskin, G. G. Aleksandrov, A. A. Sidorov, I. L. Eremenko, Russ. Chem. Bull., 2016, 65, 1198; DOI: https://doi.org/10.1007/s11172-016-1436-6.
  23. E. N. Egorov, Ph. D. (Chem.) Thesis, N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, 2013, 182 pp. (in Russian).
  24. S. Sato, M. Wada, Bull. Chem. Soc. Jpn, 1970, 43, 1955; DOI: https://doi.org/10.1246/bcsj.43.1955.
  25. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, J. Kankare, J. Lumin., 1997, 75, 149; DOI: https://doi.org/10.1016/S0022-2313(97)00113-0.
  26. K. Binnemans, Coord. Chem. Rev., 2015, 295, 1; DOI: https://doi.org/10.1016/j.ccr.2015.02.015.
  27. SMART (Control) and SAINT (Integration). Software. Version 5.0, Madison (WI, USA), Bruker AXS Inc., 1997.
  28. G. M. Sheldrick, SADABS, Madison (WI, USA), Bruker AXS Inc., 1997.
  29. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053273314026370.
  30. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J. Puschmann, Appl. Cryst., 2009, 42, 339; DOI: https://doi.org/10.1107/S0021889808042726.
  31. S. Alvarez, M. Llunell, J. Chem. Soc., Dalton Trans., 2000, 19, 3288; DOI: https://doi.org/10.1039/B004878J.
  32. D. Casanova, M. Llunell, P. Alemany, S. Alvarez, Chem. Eur. J., 2005, 11, 1479; DOI: https://doi.org/10.1002/chem.200400799.