Examples



mdbootstrap.com



 
Статья
2020

Hybrid Plasma – Prospects for Application in Medicine and Biology


T. M. VasilievaT. M. Vasilieva, M. N. VasilievM. N. Vasiliev, V. V. GaraevaV. V. Garaeva, I. S. ZlobinI. S. Zlobin, Zaw Ye MintZaw Ye Mint, Khin Maung HtauKhin Maung Htau, Htet Wai Yan KyawHtet Wai Yan Kyaw, Htet Ko Ko ZawHtet Ko Ko Zaw
Российский физический журнал
https://doi.org/10.1007/s11182-020-01951-6
Abstract / Full Text

Different schemes and designs of generators of low-temperature hybrid plasma produced by simultaneous ionization of plasma-generating medium by an electron beam with electron energy of 30 keV and an RF discharge (13.56 MHz) are considered. A plasma-chemical reactor designed for hybrid plasma generation is described, and results of spectrometric measurements of its reaction volume are presented. The reactor has been used to prepare biocompartible thin chitosan films. Experiments showed that modification of chitosan films in hybrid oxygen plasma improves their hydrophilic properties and has advantages over modification in RF-discharge or electron beam plasma when they are used separately. The bactericidal effect of the hybrid plasma was found in tests Escherichia coli cultures. Prospects for practical hybrid plasma applications in biology and medicine are discussed.

Author information
  • Moscow Institute of Physics and Technology, Dolgoprudny, the Moscow Region, RussiaT. M. Vasilieva, M. N. Vasiliev, V. V. Garaeva, I. S. Zlobin, Zaw Ye Mint, Khin Maung Htau, Htet Wai Yan Kyaw & Htet Ko Ko Zaw
References
  1. G. Bonizzoni and E. Vassallo, Vacuum, 64, Nos. 3–4, 327–336 (2002).
  2. R. D’Agostino, P. Favia, C. Oehr, et al., Plasma Proc. Polym., 2, No. 1, 7–15 (2005).
  3. H. Hess and K. D. Weltmann, Vak. Forsch. Prax., 19, No. 51, 16–20 (2007).
  4. T. von Woedtke, S. Reuter, K. Masura, et al., Phys. Rep., 530, No. 4, 291–320 (2013).
  5. Evaluierung Plasmatechnik, VDI Technologiezentrum GmbH, Düsseldorf (2004).
  6. M. Laroussi and F. Leipold, Int. J. Mass Spectrom., 233, Nos. 1–3, 81–86 (2004).
  7. K. D. Weltmann and Th. von Woedtke, Plasma Phys. Control. Fus., 59, No. 1, 0140331 (2016).
  8. G. Isbary, W. Stolz, T. Shimizu, et al., Clin. Plasma Med., 1, No. 2, 25–30 (2013).
  9. Y. Akimoto, S. Ikehara, T. Yamaguchi, et al., Arch. Biochem. Biophys., 605, 86–94 (2016).
  10. D. Xu, X. Luo, Y. Xu, et al., Biochem. Biophys. Res. Commun., 473, No. 4, 1125–1132 (2016).
  11. J. Duan, X. Lu, and G. He, J. Appl. Phys., 121, No. 1, 013302 (2017).
  12. O. Volotskova, L. Dubrovsky, M. Keidar, et al., PLoS One, 11, No. 10, e0165322 (2016).
  13. J. A. Delben, C. E. Zago, N. Tyhovych, et al., PLoS One, 11, No. 5, e0155427 (2016).
  14. M. Habib, T. L. Hottel, and L. Hong, Clin. Plasma Med., 2, No. 1, 17-1 (2014).
  15. D. Claiborne, G. McCombs, M. Lemaster, et al., Int. J. Dent. Hygiene, 12, No. 2, 108–114 (2014).
  16. S. Cha and Y. S. Park, Clin. Plasma Med., 2, No. 1, 4–10 (2014).
  17. E. Gonzalez, M. D. Barankin, P. C. Guschl, et al., Plasma Process. Polym., 7, No. 6, 482–493 (2010).
  18. H. S. Teixeira, P. G. Coelho, S. Duarte, et al., J. Biomed. Mater. Res. B, 103, No. 5, 1082–1091 (2015).
  19. R. Hirata, C. Sampaio, L. S. Machado, et al., J. Adhes. Dent., 18, No. 3, 215–222 (2016).
  20. O. Ozge and H. Nesrin, J. Biomater. Tissue Eng., 4, No. 6, 479–487 (2014).
  21. R. Koodaryan and A. Hafezeqoran, Biomed. Pharmacol. J., 9, No. 1, 317–321 (2016).
  22. F. Rezaei, B. Shokri, and M. Sharifian, Appl. Surf. Sci., 360, 641–651 (2016).
  23. A. Anitha, P. T. Sowmya, S. Kumar, et al., Prog. Polym. Sci., 39, No. 9, 1644–1667 (2014).
  24. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, No. 8, 1741–1747 (1969).