Статья
2000

Modeling a solid-phase electrochemical reaction of lithium intercalation in aluminum during a noninstantaneous nucleation of Β-LiAl


V. E. Guterman V. E. Guterman , L. N. Mironova L. N. Mironova
Российский электрохимический журнал
https://doi.org/10.1007/BF02756950
Abstract / Full Text

The interfacial surface area and the electrode surface coverage by a product during the nucleation and growth of a new phase are modeled numerically and calculated analytically for electrochemical intercalation of lithium in aluminum in the course of which intermetallic compound Β-LiAl forms. As opposed to the theoretical calculation, the model accounts for mutual influence of the new-phase nuclei on their distribution over the cathode surface under conditions of noninstantaneous nucleation. The ordering of such a distribution varies extremally (passes through a maximum) with increasing size of zones where the nucleation probability is low and which surround the nuclei. This makes the dependence of a maximum specific interfacial area on the zone radius extremal as well. The model may be applied for analyzing potentiostatic current transients during cathodic intercalation of lithium in aluminum from a LiClO4 solution in propylene carbonate.

Author information
  • Rostov State University, pr. Stachki 194, 344104, Rostov-on-Don, Russia

    V. E. Guterman & L. N. Mironova

References
  1. Gamburg, Yu.D.,Elektrokhimicheskaya kristallizatsiya metallov i splavov (The Electrochemical Crystallization of Metals and Alloys), Moscow: Yanus-K, 1997.
  2. Sharifker, B.R. and Mostany, J.,J. Electroanal. Chem., 1984, vol. 177, p. 13.
  3. Sharifker, B.R. and Hills, G.J.,Electrochim. Acta, 1983, vol. 28, p. 879.
  4. Guterman, V.E., Ginzburg, A.S., Lepin, E.A., and Mironova, L.N.,Kinet. Katal, 1998, vol. 39, p. 505.
  5. Kabanov, B.N. and Chekavtsev, A.V.,Itogi Nauki Tekh., Ser.: Elektrokhimiya, 1984, vol. 21, p. 140.
  6. Gunawardena, G.A., Hills, G.J., Montenegro, I., and Scharifker, B.R.,J. Electroanal. Chem., 1982, vol. 138, p. 225.
  7. Isaev, V.A. and Baraboshkin, A.N.,Elektrokhimiya, 1985, vol. 21, p. 960.
  8. Rozovskii, A.Ya.,Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: Khimiya, 1974.
  9. Rozovskii, A.Ya.,Geterogennye khimicheskie reaktsii: kinetika i makrokinetika (Heterogeneous Chemical Reactions: Kinetics and Macrokinetics), Moscow: Nauka, 1980.
  10. Lantelme, F.,J. Electroanal. Chem., 1985, vol. 191, p. 343.
  11. Abyanesh, M.,J. Electroanal. Chem., vol. 210, p. 1.
  12. Alekseeva, L.A., Astakhov, I.I., Popova, S.S.,et al., Elektrokhimiya, 1985, vol. 21, p. 1116.
  13. Guterman, V.E., Gontmakher, N.M., Grigor’ev, V.R, and Averina, Yu.V.,Elektrokhimiya, 1989, vol. 25, p. 1618.
  14. Guterman, V.E., Saenko, O.E., Lukov, V.V., and Grigor’ev, V.R,Elektrokhimiya, 1995, vol. 31, p. 547.
  15. Guterman, V.E., Averina, Yu.V., and Grigor’ev, V.P.,Electrochim. Acta (in press).
  16. Polukarov, Yu.M.,Fizicheskaya khimiya: Sovremennye problemy (Physical Chemistry: Current Problems), Moscow: Khimiya, 1985, p. 107.
  17. Guterman, V.E., Grigor’ev, V.R, Averina, Yu.V.,et al., Elektrokhimiya, 1994, vol. 30, p. 663.