Examples



mdbootstrap.com



 
Статья
2021

Solvent effect in palladium-catalyzed allylation of norbornadiene


S. A. DurakovS. A. Durakov, P. V. MelnikovP. V. Melnikov, E. M. MartsinkevichE. M. Martsinkevich, A. A. SmirnovaA. A. Smirnova, R. S. ShamsievR. S. Shamsiev, V. R. FlidV. R. Flid
Российский химический вестник
https://doi.org/10.1007/s11172-021-3064-z
Abstract / Full Text

The palladium-catalyzed allylation of norbornadiene is a unique method for the C-C bond formation involving allyl derivatives. This reaction proceeds in solution. However, the selection of the solvent is so far an empirical procedure, and the role of the solvent in this process is poorly understood. The effect of the solvent on the reaction pattern is considered in terms of polarity, polarizability, and coordinating ability of the solvent. These properties were shown to be the key factors in selecting the proper solvent. Based on investigation of the mechanism of individual catalytic cycle stages, the features of the interaction between the solvent, the catalyst, and reagents were analyzed.

Author information
  • Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 86 prosp. Vernadskogo, 119571, Moscow, Russian FederationS. A. Durakov, P. V. Melnikov, E. M. Martsinkevich, A. A. Smirnova, R. S. Shamsiev & V. R. Flid
References
  1. M. Catellani, G. Chiusoli, E. Dradi, G. Salerno, J. Organomet. Chem., 1979, 117, 29; DOI: https://doi.org/10.1016/S0022-328X(00)94094-4.
  2. U. M. Dzhemilev, R. I. Khusnutdinov, D. K. Galeev, O. M. Nefedov, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 122; DOI: https://doi.org/10.1007/BF00953861.
  3. U. M. Dzhemilev, R. I. Khusnutdinov, D. K. Galeev, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 136; DOI: https://doi.org/10.1007/BF00953863.
  4. N. Tsukada, T. Sato, Y. Inoue, Tetrahedron Lett., 2000, 41, 4181; DOI: https://doi.org/10.1016/S0040-4039(00)00600-6.
  5. S. V. Leont’eva, O. S. Manulik, E. M. Evstigneeva, E. N. Bobkova, V. R. Flid, Kinet. Catal., 2006, 47, 384; DOI: https://doi.org/10.1134/S0023158406030098.
  6. I. P. Stolyarov, A. E. Gekhman, I. I. Moiseev, A. Yu. Kolesnikov, E. M. Evstigneeva, V. R. Flid, Russ. Chem. Bull., 2007, 56, 320; DOI: https://doi.org/10.1007/s11172-007-0052-x.
  7. E. M. Evstigneeva, O. S. Manulik, V. R. Flid, Kinet. Catal., 2004, 45, 172; DOI: https://doi.org/10.1023/B:KICA.0000023787.79493.e7.
  8. V. R. Flid, M. L. Gringolts, R. S. Shamsiev, E. Sh. Finkelshtein, Russ. Chem. Rev., 2018, 87, 1169; DOI: https://doi.org/10.1070/RCR4834.
  9. Z. Li, J. Zheng, C. Li, W. Wu, H. Jiang, Chin. J. Chem., 2019, 37, 140; DOI: https://doi.org/10.1002/cjoc.201800536.
  10. V. R. Flid, S. A. Durakov, T. A. Morozova, Russ. Chem. Bull., 2016, 65, 2639; DOI: https://doi.org/10.1007/s11172-016-1629-z.
  11. R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2020, 69, 653; DOI: https://doi.org/10.1007/s11172-020-2813-8.
  12. E. M. Evstigneeva, O. S. Manulik, V. R. Flid, I. P. Stolyarov, N. Yu. Kozitsyna, M. N. Vargaftik, I. I. Moiseev, Russ. Chem. Bull., 2004, 53, 1345; DOI: https://doi.org/10.1023/B:RUCB.0000042298.81687.dd.
  13. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Kinet. Catal., 2019, 60, 245; DOI: https://doi.org/10.1134/S0023158419030042.
  14. J. Sherwood, J. H. Clark, I. J. S. Fairlamb, J. M. Slattery, Green Chem., 2019, 21, 2164; DOI: https://doi.org/10.1039/C9GC00617F.
  15. F. Proutiere, F. Schoenebeck, Angew. Chem., Int. Ed., 2011, 50, 8192; DOI: https://doi.org/10.1002/anie.201101746.
  16. P. J. Dyson, P. G. Jessop, Catal. Sci. Technol., 2016, 6, 3302; DOI: https://doi.org/10.1039/C5CY02197A.
  17. R. Díaz-Torres, S. Alvarez, Dalton Trans., 2011, 40, 10742; DOI: https://doi.org/10.1039/c1dt11000d.
  18. C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Fourth Edition, Wiley-VCH, 2011, 692.
  19. R. Bosque, J. Sales, J. Chem. Inf. Comput. Sci, 2002, 42, 1154; DOI: https://doi.org/10.1021/ci025528x.
  20. L. B. Kier, J. Pharm. Sci., 1981, 70, 930; DOI: https://doi.org/10.1002/jps.2600700825.
  21. W. A. Carole, T. J. Colacot, Chem.-Eur. J., 2016, 22, 7686; DOI: https://doi.org/10.1002/chem.201601450.
  22. C. Amatore, E. Carre, A. Jutand, M. A. M’Barki, Organometallics, 1995, 14, 1818; DOI: https://doi.org/10.1021/om00004a039.
  23. C. Amatore, A. Jutand, M. A. M’Barki, Organometallics, 1992, 11, 300; DOI: https://doi.org/10.1021/om00045a012.
  24. C. Amatore, S. Gamez, A. Jutand, Chem.-Eur. J., 2001, 7, 1273; DOI: https://doi.org/10.1002/1521-3765(20010316)7:6<1273:AIDCHEM1273>3.0.CO;2-7.
  25. C. Amatore, S. Gamez, A. Jutand, G. Meyer, L. Mottier, Electrochim. Acta, 2001, 46, 3237; DOI: https://doi.org/10.1016/S0013-4686(01)00615-6.
  26. C. Amatore, A. Jutand, G. Meyer, L. Mottier, Chem.-Eur. J., 1999, 5, 466; DOI: https://doi.org/10.1002/(SICI)1521-3765(19990201)5:2<466:AID-CHEM466>3.0.CO;2-E.
  27. C. Amatore, A. Jutand, A. Thuilliez, Organometallics, 2001, 20, 3241; DOI: https://doi.org/10.1021/om0101137.
  28. W. L. F. Armarego, Purification of Laboratory Chemicals, Eighth Edition, Butterworth-Heinemann, 2017, 1176.
  29. I. P. Stolyarov, L. I. Demina, N. V. Cherkashina, Russ. J. Inorg. Chem., 2011, 10, 1532; DOI: https://doi.org/10.1134/S003602361110024X.
  30. L. G. Shaidarova, I. A. Chelnokova, G. F. Makhmutova, A. V. Gedmina, H. C. Budnikov, J. Anal. Chem., 2014, 69, 656; DOI: https://doi.org/10.1134/S1061934814070120.
  31. A. A. Bilyalova, S. V. Tatarin, P. Kalle, D. E. Smirnov, I. S. Zharinova, Y. M. Kiselev, V. D. Dolzhenko, S. I. Bezzubov, Russ. J. Inorg. Chem., 2019, 64, 207; DOI: https://doi.org/10.1134/S0036023619020037.