Examples



mdbootstrap.com



 
Статья
2020

Catalytic Synthesis and Study of Carbon–Graphene Structures


A. A. ArbuzovA. A. Arbuzov, A. A. VolodinA. A. Volodin, B. P. TarasovB. P. Tarasov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024420050039
Abstract / Full Text

The optimum conditions of production, structure, and features of the formation of carbon–graphene composites on nickel–graphene catalysts are determined. A mechanism is proposed for the formation of nickel–carbon–graphene composites that consists of several stages: reduction of graphite oxide and nickel ions; the formation and growth of Ni clusters on reduced graphite oxide; catalytic pyrolysis of ethylene on Ni single crystals attached to a graphene-like support; and the formation and growth of carbon nanostructures on the surface of graphene-like material.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, RussiaA. A. Arbuzov, A. A. Volodin & B. P. Tarasov
References
  1. G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 8, 3166 (2008).
  2. H. Jiang and X.-L. Cheng, J. Mol. Graphics Modell. 85, 223 (2018).
  3. J. Chen, Ch. Jia, and Zh. Wan, Synth. Met. 189, 69 (2014).
  4. Z. Liu, Zh. Qian, J. Song, Y. Zhang, et al., Carbon 149, 181 (2019).
  5. J. Feng, L. Dong, X. Li, et al., Electrochim. Acta 302, 65 (2019).
  6. J. Li, J. Tang, J. Yuan, et al., Chem. Phys. Lett. 693, 60 (2018).
  7. K.-C. Pham, D. S. McPhail, C. Mattevi, et al., J. Electrochem. Soc. 163, F255 (2016).
  8. D. K. Kumar, S. K. Swami, V. Dutta, et al., FlatChem 15, 100105 (2019).
  9. Q. Tang, M. Sun, Sh. Yu, and G. Wang, Electrochim. Acta 125, 488 (2014).
  10. Y.-Sh. Wang, Sh.-Y. Yang, Sh.-M. Li, et al., Electrochim. Acta 87, 261 (2013).
  11. M. Kotal and A. K. Bhowmick, J. Phys. Chem. C 117, 25865 (2013).
  12. B. You, L. Wang, L. Yao, and J. Yang, Chem. Commun. 49, 5016 (2013).
  13. N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, et al., ACS Nano 4, 2300 (2010).
  14. J. Li, J. Tang, J. Yuan, et al., Chem. Phys. Lett. 693, 60 (2018).
  15. Ch. Wang, M. Cao, P. Wang, et al., Appl. Catal., A: Gen. 473, 83 (2014).
  16. X. Chen, X. Chen, F. Zhang, et al., J. Power Sources 243, 555 (2013).
  17. Z. Tai, X. Yana, J. Langa, and Q. Xue, J. Power Sources 199, 373 (2012).
  18. B. P. Tarasov, A. A. Arbuzov, S. A. Mozhzhukhin, A. A. Volodin, and P. V. Fursikov, J. Struct. Chem. 59, 830 (2018). https://doi.org/10.26902/JSC20180411
  19. B. P. Tarasov, V. E. Muradyan, and A. A. Volodin, Russ. Chem. Bull. 60, 1261 (2011). https://doi.org/10.1007/s11172-011-0194-8
  20. A. A. Arbuzov, V. E. Muradyan, and B. P. Tarasov, Russ. Chem. Bull. 62, 1962 (2013). https://doi.org/10.1007/s11172-016-0284-x
  21. A. A. Arbuzov, S. A. Mozhzhukhin, A. A. Volodin, P. V. Fursikov, and B. P. Tarasov, Russ. Chem. Bull. 65, 1893 (2016). https://doi.org/10.1007/s11172-016-1530-9
  22. A. A. Arbuzov, V. E. Muradyan, B. P. Tarasov, E. A. Sokolov and S. D. Babenko, Russ. J. Phys. Chem. A 90, 907 (2016). https://doi.org/10.7868/S0044453716050071
  23. M. V. Klyuev, A. A. Arbuzov, N. A. Magdalinova, P. A. Kalmykov, and B. P. Tarasov, Russ. J. Phys. Chem. A 90, 1749 (2016). https://doi.org/10.7868/S0044453716090144
  24. A. A. Arbuzov, M. V. Klyuev, P. A. Kalmykov, et al., RF Patent No. 2551673 C1, Byull. Izobret., No. 15 (2015).