Examples



mdbootstrap.com



 
Статья
2021

Synthesis and Luminescent Properties of Eu3+, Gd3+, and Tb3+ Complex Compounds with Some N-Substituted Phthalamic Acids


A. V. ChernyshovaA. V. Chernyshova, A. A. NikolaevA. A. Nikolaev, F. A. KolokolovF. A. Kolokolov, V. V. DotsenkoV. V. Dotsenko, N. A. AksenovN. A. Aksenov, I. V. AksenovaI. V. Aksenova
Российский журнал общей химии
https://doi.org/10.1134/S1070363221060128
Abstract / Full Text

A number of europium(III), terbium(III), and gadolinium(III) coordination compounds with N-substituted phthalamic acids were synthesized. Composition and structure of the ligands and the obtained complex compounds were confirmed by NMR and IR spectroscopy and thermogravimetric analysis. It was found that terbium(III) and europium(III) coordination compounds with N-phenylphthalamic acid possess the most pronounced luminescence.

Author information
  • Kuban State University, 350040, Krasnodar, RussiaA. V. Chernyshova, A. A. Nikolaev & V. V. Dotsenko
  • Mendeleev Russian University of Chemical Technology, 125047, Moscow, RussiaF. A. Kolokolov
  • North Caucasus Federal University, 355009, Stavropol, RussiaV. V. Dotsenko, N. A. Aksenov & I. V. Aksenova
References
  1. Katkova, M.A., Bochkarev, M.N., and Vitukhnovsky, A.G., Russ. Chem. Rev., 2005, vol. 74, no. 12, p. 1089. https://doi.org/10.1070/RC2005v074n12ABEH002481
  2. Kido, J. and Okamoto, Y., Chem. Rev., 2002, vol. 102, no. 6, p. 2357. https://doi.org/10.1021/cr010448y
  3. Eliseeva, S.V. and Bünzli, J.C.G., Chem. Soc. Rev., 2010, vol. 39, no. 1, p. 189. https://doi.org/10.1039/B905604C
  4. Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z., and Huang, C., Adv. Opt. Mat., 2019, vol. 7, no. 11, article no. 1801256. https://doi.org/10.1002/adom.201801256
  5. Bünzli, J.C.G., Comby, S., Chauvin, A.S., and Vandevyver, C.D., J. Rare Earths., 2007, vol. 25, no. 3, p. 257. https://doi.org/10.1016/S1002-0721(07)60420-7
  6. Xu, H., Sun, Q., An, Z., Wei, Y., and Liu, X., Coord. Chem. Rev., 2015, vols. 293–294, p. 228. https://doi.org/10.1016/j.ccr.2015.02.018
  7. Kuz’mina, N.P. and Eliseeva, S.V., Russ. J. Inorg. Chem., 2006, vol. 51, no. 1, p. 73. https://doi.org/10.1134/S0036023606010141
  8. Katkova, M.A. and Bochkarev, M.N., Dalton Trans., 2010, vol. 39, no. 29, p. 6599. https://doi.org/10.1039/C001152E
  9. de Bettencourt-Dias, A., Dalton Trans., 2007, vol. 36, no. 22, p. 2229. https://doi.org/10.1039/B702341C
  10. Feng, J. and Zhang, H., Chem. Soc. Rev., 2013, vol. 42, no. 1, p. 387. https://doi.org/10.1039/C2CS35069F
  11. Wei, C., Ma, L., Wei, H., Liu, Z., Bian, Z., and Huang, C., Sci. China Technol. Sci., 2018, vol. 61, no. 9, p. 1265. https://doi.org/10.1007/s11431-017-9212-7
  12. Armelao, L., Quici, S., Barigelletti, F., Accors, G., Bottaro, G., Cavazzini, M., and Tondello, E., Coord. Chem. Rev., 2010, vol. 254, nos. 5–6, p. 487. https://doi.org/10.1016/j.ccr.2009.07.025
  13. da Rosa, P.P.F., Kitagawa, Y., and Hasegawa, Y., Coord. Chem. Rev., 2020, vol. 406. Paper N 213153
  14. Pushkarev, A.P. and Bochkarev, M.N., Russ. Chem. Rev., 2016, vol. 85, no. 12, p. 1338. https://doi.org/10.1070/RCR4665
  15. Kotlova, I.A., Kolokolov, F.A., Dotsenko, V.V., Aksenov, N.A., and Aksenova, I.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 12, p. 2413. https://doi.org/10.1134/S1070363219120144
  16. Peretertov, V.A. and Kolokolov, F.A., Russ. J. Inorg. Chem., 2018, vol. 63, no. 5, p. 661. https://doi.org/10.1134/S0036023618050169
  17. Nazarenko, M.A., Oflidi, A.I., Nikolaev, A.A., Panyushkin, V.T., and Magomadova, M.A., Russ. J. Gen. Chem., 2020, vol. 90, no. 11, p. 2115. https://doi.org/10.1134/S1070363220110158
  18. Ravindar, V., Swamy, S.J., Srihari, S., and Lingaiah, P., Polyhedron, 1985, vol. 4, no. 8, p. 1511. doi: 10.1016/S0277-5387(00)86991-0
  19. Sirajuddin, M., Ali, S., and Tahir, M.N., J. Mol. Struct., 2020, article no. 129600. https://doi.org/10.1016/j.molstruc.2020.129600
  20. Chauhan, H.P.S., Chourasia, S., Agrawal, N., and Rao, R.J., Synth. React. Inorg. Metal-Org. Chem., 1994, vol. 24, no. 2, p. 325. https://doi.org/10.1080/00945719408000113
  21. Singh, B.K., Mishra, P., and Garg, B.S., Spectrochim. Acta (A), 2008, vol. 69, no. 2, p. 361. https://doi.org/10.1016/j.saa.2007.04.007
  22. Singh, B.K., Mishra, P., and Garg, B.S., Spectrochim. Acta (A), 2008, vol. 69, no. 3, p. 880. https://doi.org/10.1016/j.saa.2007.05.045
  23. Prasad, A.V.S.S., Reddy, P.M., and Ravinder, V., Spectrochim. Acta (A), 2009, vol. 72, no. 1, p. 204. https://doi.org/10.1016/j.saa.2008.07.035
  24. Ravindar, V., Lingaiah, P., and Reddy, K.V., Inorg. Chim. Acta, 1984, vol. 87, no. 1, p. 35. https://doi.org/10.1016/S0020-1693(00)83617-8
  25. Sharma, C.L., Narvi, S.S., and Arya, R.S., Acta Chim. Hung., 1983, vol. 114, nos. 3–4, p. 349.
  26. Angus, P.M. and Jackson, W.G., Inorg. Chim. Acta, 1998, vol. 268, no. 1, p. 85. https://doi.org/10.1016/S0020-1693(97)05723-X
  27. Singh, B.K., Prakash, A., and Adhikari, D., Spectrochim. Acta (A), 2009, vol. 74, no. 3, p. 657. https://doi.org/10.1016/j.saa.2009.07.017
  28. Chen, G., Sarris, J.L., Wardle, N.J., Bligh, S.A., and Chatterton, N.P., Chem. Commun., 2012, vol. 48, no. 72, p. 9026. https://doi.org/10.1039/C2CC34425D
  29. Sokolov, M.E., Arkhipova, I.N., Kolokolov, F.A., Volynkin, V.A., and Panyushkin, V.T., Russ. J. Gen. Chem., 2010, vol. 80, no. 10, p. 1895. https://doi.org/10.1134/S1070363210100014
  30. Sokolov, M.E., Repina, I.N., Raitman, O.A., Kolokolov, F.A., and Panyushkin, V.T., Russ. J. Phys. Chem., 2016, vol. 90, no. 5, p. 1097. https://doi.org/10.1134/S0036024416050320
  31. Shul’gin, V., Pevzner, N., Gusev, A., Sokolov, M., Panyushkin, V., Devterova, J., Kirillov, K., Martynenko, I., and Linert, W., J. Coord. Chem., 2018, vol. 71, no. 24, p. 4228. https://doi.org/10.1080/00958972.2018.1536783
  32. Sokolov, M.E., Repina, I.N., and Panyushkin, V.T., J. Phys. Chem. (C), 2012, vol. 116, no. 9, p. 5554. https://doi.org/10.1021/jp204574w
  33. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: John Wiley, 1986.
  34. Deacon, G.B. and Phillips, R.J., Coord. Chem. Rev., 1980, vol. 33, no. 3, p. 227. https://doi.org/10.1016/S0010-8545(00)80455-5
  35. Sutton, C.C.R., da Silva, G., and Franks, G.V., Chem. Eur. J., 2015, vol. 21, no. 18, p. 6801. https://doi.org/10.1002/chem.201406516
  36. Yan, X., Li, Y., Wang, Q., Huang, X., Zhang, Y., Gao, C., Liu, W., Tang, Y., Zhang, H., and Shao, Y., Cryst. Growth Des., 2011, vol. 11, no. 9, p. 4205. https://doi.org/10.1021/cg200816f
  37. Bünzli, J.-C.G., in Springer Series in Materials Science. Spectroscopic Properties of Rare Earths in Optical Materials, Berlin: Springer, 2005, vol. 83, p. 477. https://doi.org/10.1007/3-540-28209-2_9