Статья
2020

Implementation of a TiO2/N719-Dye Photo-Anode in a DSSC and Performance Analysis


 Manuel Antuch Manuel Antuch , Sergey A. Grigoriev Sergey A. Grigoriev , Waleed M. A. El Rouby Waleed M. A. El Rouby , Pierre Millet Pierre Millet
Российский электрохимический журнал
https://doi.org/10.1134/S102319352010002X
Abstract / Full Text

Dye Sensitized Solar Cells (DSSC) are promising photovoltaic systems which are used to convert visible light into useful DC electric power. Up to now, a lot of efforts have been made for optimizing cell components and maximizing the power conversion efficiency, and a large body of experimental work has been reported in the literature. However, it is not always clear which light conditions favor increased efficiency and what are the limiting factors that govern the overall kinetics of the DSSC. In this work we have used three different light-emitting diodes (LEDs) to characterize the performances of a model DSSC under different illumination conditions. A thorough characterization of the dynamics of microscopic processes taking place during operation of the DSSC was performed by Photoelectrochemical Impedance Spectroscopy and Intensity Modulated Photovoltage Spectroscopy analysis. Microscopic rate parameters associated to charge recombination and charge transfer have been determined separately under various light power densities. Results show that the dynamics of charge transport and recombination within the DSSC depends on light power, but is independent of the energy of the photons emitted by the LEDs. The relationship between the wavelength-dependent incident-photon-to-current efficiency and the LED emitted photons at 594 nm, which was the determinant factor contributing to a larger short-circuit current and hence the increased efficiency, was analyzed. The best illumination conditions required to extract the maximum power from a DSSC were analyzed and discussed.

Author information
  • Université Paris-Saclay, Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR CNRS 8182, 91405, Orsay, France

    Manuel Antuch, Waleed M. A. El Rouby & Pierre Millet

  • National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

    Sergey A. Grigoriev

  • Beni-Suef University, Faculty of Postgraduate Studies for Advanced Science, 62511, Beni-Suef, Egypt

    Waleed M. A. El Rouby

References
  1. Solaronix website. https://www.solaronix.com/. Accessed Jan. 20, 2020.
  2. GreatCell Solar website. http://www.greatcellsolar.com/. Accessed Jan. 20, 2020.
  3. EXEGER website. https://exeger.com/. Accessed Jan. 20, 2020.
  4. De Angelis, F. and Kamat, P., A conversation with Michael Grätzel, ACS Energy Lett., 2017, vol. 2, p. 1674.
  5. Du, J., Du, Z., Hu, J.-S., Pan, Z., Shen, Q., Sun, J., Long, D., Dong, H., Sun, L., Zhong, X., and Wan, L.-J., Zn−Cu−In−Se quantum dot solar cells with a certified power conversion efficiency of 11.6%, J. Am. Chem. Soc., 2016, vol. 138, p. 4201.
  6. Wang, H., Gonzalez-Pedro, V., Kubo, T., Fabregat-Santiago, F., Bisquert, J., Sanehira, Y., Nakazaki, J., and Segawa, H., Enhanced carrier transport distance in colloidal PbS quantum-dot-based solar cells using ZnO nanowires, J. Phys. Chem. C, 2015, vol. 119, p. 27265.
  7. Delekar, S.D., Dhodamani, A.G., More, K.V., Dongale, T.V., Kamat, R.K., Acquah, S.F.A., Dalal, N.S., and Panda, D.K., Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru(II) sensitizers, ACS Omega, 2018, vol. 3, p. 2743.
  8. Sim, Y.H., Yun, M.J., Cha, S.I., Seo, S.H., and Lee, D.Y., Improvement in energy conversion efficiency by modification of photon distribution within the photoanode of dye-sensitized solar cells, ACS Omega, 2018, vol. 3, p. 698.
  9. Roelofs, K.E., Herron, S.M., and Bent, S.F., Increased quantum dot loading by pH control reduces interfacial recombination in quantum-dot-sensitized solar cells, ACS Nano, 2015, vol. 9, p. 8321.
  10. Barea, E.M. and Bisquert, J., Properties of chromophores determining recombination at the TiO2-dye-electrolyte interface, Langmuir, 2013, vol. 29, no. 28, p. 8773.
  11. Jennings, J.R., Li, F., and Wang, Q., Reliable determination of electron diffusion length and charge separation efficiency in dye-sensitized solar cells, J. Phys. Chem. C, 2010, vol. 114, p. 14665.
  12. Negi, S.S., Integrated electronic, optical, and structural features in pseudo-3D mesoporous TiO2–X delivering enhanced dye-sensitized solar cell performance, ACS Omega, 2018, vol. 3, p. 1645.
  13. Sharmoukh, W., Cong, J., Gao, J., Liu, P., Daniel, Q., and Kloo, L., Molecular engineering of D-D-π-A-based organic sensitizers for enhanced dye-sensitized solar cell performance, ACS Omega, 2018, vol. 3, p. 3819.
  14. Bhagavathiachari, M., Elumalai, V., Gao, J., and Kloo, L., Polymer-doped molten salt mixtures as a new concept for electrolyte systems in dye-sensitized solar cells, ACS Omega, 2017, vol. 2, p. 6570.
  15. Maragani, R., Ansari, M.S., Banik, A., Misra, R., and Qureshi, M., Cs-symmetric triphenylamine-linked bisthiazole-based metal-free donor-acceptor organic dye for efficient ZnO nanoparticles-based dye-sensitized solar cells: synthesis, theoretical studies, and photovoltaic properties, ACS Omega, 2017, vol. 2, p. 5981.
  16. Fernandes, S.S.M., Castro, M.C.R., Pereira, A.I., Mendes, A., Serpa, C., Pina, J., Justino, L.L.LG., Burrows, H.D., and Raposo, M.M.M., Optical and photovoltaic properties of thieno[3,2-b]thiophene-based push-pull organic dyes with different anchoring groups for dye-sensitized solar cells, ACS Omega, 2017, vol. 2, p. 9268.
  17. Sun, Y., Onicha, A.C., Myahkostupov, M., and Castellano, F.N., Viable alternative to N719 for dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2010, vol. 2, p. 2039.
  18. Li, H., Hong, W., Cai, F., Tang, Q., Yan, Y., Hu, X., Zhao, B., Zhang, D., and Xu, Z., Au@SiO2 nanoparticles coupling co-sensitizers for synergic efficiency enhancement of dye sensitized solar cells, J. Mater. Chem., 2012, vol. 22, p. 24734.
  19. Titanium dioxide. http://shop.solaronix.com/ti-nanoxide-t-sp.html. Accessed Jan. 15, 2020.
  20. Ruthenium dye N719. http://shop.solaronix.com/ruthenizer-535-bistba.html. Accessed Jan. 20, 2020.
  21. Electrolyte. http://shop.solaronix.com/mosalyte-tde250. Accessed Jan. 20, 2020.
  22. Thorlabs LEDs. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2692. Accessed Jan. 20, 2020.
  23. Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Sero, I., and Bisquert, J., Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 9083.
  24. Lee, Y., Jang, S.-R., Vittal, R., and Kim, K.-J., Dinuclear Ru(II) dyes for improved performance of dye-sensitized TiO2 solar cells, New J. Chem., 2007, vol. 31, p. 2120.
  25. Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer, J. Phys. Chem. B, 2002, vol. 106, p. 325.
  26. Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F., Ferriols, N.S., Bogdanoff, P., and Pereira, E.C., Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution, J. Phys. Chem. B, 2000, vol. 104, no. 10, pp. 2287–2298. https://doi.org/10.1021/jp993148h
  27. Fabregat-Santiago, F. Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S.M., and Grätzel, M., Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids, J. Phys. Chem. C, 2007, vol. 111, pp. 6550–6560.
  28. Hauch, A. and Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta, 2001, vol. 46, p. 3457 (2001).
  29. Bisquert, J. and Mora-Seró, I., Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length, J. Phys. Chem. C, 2010, vol. 1, p. 450.
  30. Antuch, M., Millet, P., Iwase, A., and Kudo, A., The role of surface states during photocurrent switching: intensity modulated photocurrent spectroscopy analysis of BiVO4 photoelectrodes, Appl. Catal. B Environ., 2018, vol. 237, p. 401.
  31. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., and Bisquert, J., Water oxidation at hematite photoelectrodes: the role of surface states, J. Am. Chem. Soc., 2012, vol. 134, p. 4294.
  32. Schlichthörl, G., Huang, S.Y., Sprague, J., and Frank, A.J., Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy, J. Phys. Chem. B, 1997, vol. 101, p. 8141.
  33. Krüger, J., Plass, R., Grätzel, M., Cameron, P.J., and Peter, L.M., Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy, J. Phys. Chem. B, 2003, vol. 107, p. 7536.
  34. De Angelis, F., Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells, Acc. Chem. Res., 2014, vol. 47, p. 3349.
  35. De Angelis, F., Fantacci, S., Mosconi, E., Nazeeruddin, M.K., and Grätzel, M., Absorption spectra and excited state energy levels of the N719 dye on TiO2 in dye-sensitized solar cell models, J. Phys. Chem. C, 2011, vol. 115, p. 8825.