Статья
2019

The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review)


O. A. Petrii O. A. Petrii
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519010129
Abstract / Full Text

The reactions of electrooxidation of methanol and formic acid pertain to the most important model electrocatalytic processes and are used in direct low-temperature fuel cells. The electrooxidation mechanisms of these substances were actively studied for many decades. Considerable progress in this field was achieved due to the combined use of electrochemical techniques, in situ IR spectroscopy, differential electrochemical mass spectrometry, isotope-kinetic method, ab initio calculations in terms of the density functional theory, and comparison with the results of gas-phase investigations. The fundamental role in understanding the mechanism of processes was played by measurements on single-crystal faces and surfaces with the known ratio of terraces, steps, and kinks. This allowed the information accumulated for catalysts formed by metal nanoparticles to be interpreted and the role of the structure and size factors in electrocatalysis to be revealed. Attention is focused on the nature of adsorbates and intermediates, the detailed reaction routes, the mechanism of possible slow stages, the pH effects, the roles of the nature of anions in acidic solutions and of the nature cations in alkaline solutions. The effect of the catalyst loading and the multistage character of electrooxidation processes on the efficiency of real fuel cells is noted. The mechanisms of Langmuir–Hinshelwood and Eley–Rideal are analyzed as applied to electrooxidation processes as well as certain peculiarities of CO adsorbate electrooxidation. The results on the mechanism of interaction between adsorbed oxygen and С1-compounds are discussed. The specific features of processes on bimetallic surfaces and the strategy for designing catalysts based on the views on the mechanism of processes, the control over the structure/ composition of the surface and its specific decoration with metal adatoms are considered. Certain topical research directions are formulated aimed at deeper understanding of the mechanisms of electrooxidation of C1-compounds.

Author information
  • Faculty of Chemistry, Moscow State University, Leninskie Gory, Moscow, 119991, Russia

    O. A. Petrii

References
  1. Electrocatalysis, Lipkowski, J. and Ross, P.N., New York: Wiley-VCH, 1998.
  2. Handbook of Fuel Cells. Fundamentals Technology and Applications. Vol. 2. Electrocatalysis, Vielstich, W., Lamm, A., and Gasteiger, H.A., (Eds.), Chichester: Wiley, 2003.
  3. Petrii, O.A., Podlovchenko, B.I., Frumkin, A.N., and Hira Lal, The behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solutions, J. Electroanal. Chem., 1965, vol. 10, p. 253.
  4. Podlovchenko, B.I., Petrii, O.A., Frumkin, A.N., and Hira Lal, The behavior of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid, J. Electroanal. Chem., 1966, vol. 11, p. 12.
  5. Bagotzky, V.S., Vassiliev, Yu.B., and Khazova, O.A., Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals, J. Electroanal. Chem., 1977, vol. 81, p. 229.
  6. Bagotzky, V.S. and Vassilyev, Yu.B., Mechanism of electro-oxidation of methanol on the platinum electrode, Electrochim. Acta, 1967, vol. 12, p. 1323.
  7. Kazarinov, V.E., Tysyachnaya, G.Ya., and Andreev, V.N., On the reasons for the discrepancies in the data on methanol adsorption on platinum, J. Electroanal. Chem., 1975, vol. 65, p. 391.
  8. Problemy elektrokatalyza (Problems of electrocatalysis), Bagotzky, V.S. (Ed.), Moscow: Nauka, 1980.
  9. McNicol, B.D., Rand, D.A.J., and Williams, K.R., Direct methanol-air fuel cells for road transportation, J. Power Sources, 1999, vol. 83, p. 15.
  10. Lamy, C., Lima, A., LeRhun, V., Delima, F., Countanceau, C., and Leger, J.-M., Recent advances in the development of direct alcohol fuel cell (DAFC), J. Power Sources, 2002, vol. 105, p. 283.
  11. Yu, X.W. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.
  12. Rees, N.V. and Compton, R.G., Sustainable energy: a review of formic acid electrochemical fuel cells, J. Solid-State Electrochem., 2011, vol. 15, p. 2095.
  13. An, L. and Chen, R., Direct formate fuel cells: A review, J. Power Sources, 2016, vol. 320, p. 127.
  14. Hampson, N.A., Willars, M.J., and McNicol, B.D., The methanol-air fuel cell: a selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes, J. Power Sources, 1979, vol. 4, p. 191.
  15. Lamy, C., Leger, J.M., Clavilier, J., and Parsons, R., Structural effects in electrocatalysis. A comparative study of the oxidation of CO, HCOOH and CH3OH on single crystal Pt electrodes, J. Electroanal.Chem., 1983, vol. 150. p. 71.
  16. Parsons, R. and VanderNoot, T., The oxidation of small organic molecules: A survey of recent fuel cell related research, J. Electroanal. Chem., 1988, vol. 257, p. 9.
  17. Beden, B., Leger, J.-M., and Lamy, C., Electrocatalytical oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, in Modern Aspects of Electrochemistry, Vol. 22, Bockris, J.O’M., Conway, B.E., and White, R.E. (Eds.) New York: Plenum, 1992, p. 97.
  18. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. Today, 1997, vol. 38, p. 445.
  19. Wasmus, S. and Kuver, A., Methanol oxidation and direct methanol fuel cell, J. Electroanal.Chem., 1999, vol. 461, p. 14.
  20. Arico, A., Srinivasan, S., and Antonucci, V., DMFCs: From fundamental aspects to technology development, Fuel Cells, 2001, vol. 1, p. 133.
  21. Iwasita, T., Electrocatalysis of methanol oxidation, Electrochim. Acta, 2002, vol. 47, p. 3663.
  22. Markovic, N.M. and Ross Jr., P.N., Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep., 2002, vol. 45, p. 117.
  23. Mayrhofer, K.J.J., Arenz, M., Blizanak, B., Stamenkovich, V., Ross, P.N., and Markovic, N.M., CO surface electrochemistry on Pt-nanoparticles: a selective review, Electrochim. Acta, 2005, vol. 50, p. 5144.
  24. Yu, E.H., Wang, X., Krewer, U., Li, L., and Scott, K., Direct oxidation alkaline fuel cells: from materials to systems, Energy Environ. Sci., 2012, vol. 5, p. 5668.
  25. Bartrom, A. and Haan, J., The direct formate fuel cell with alkaline anion exchange membrane, J. Power Sources, 2012, vol. 214, p. 68.
  26. Jiang, J. and Wieckowski, A., Prospective direct formate fuel cell, Electrochem. Commun., 2012, vol. 18, p. 41.
  27. Tolmachev, Yu.V. and Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: developments in the last decade, J. Solid State Electrochem., 2017, vol. 21, p. 613.
  28. Cohen, J.L., Volpe, D.J., and Abruna, H.D., Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes, Phys. Chem. Chem. Phys., 2007, vol. 7, p. 49.
  29. Housmans, T.H.M. and Koper, M.T.M., Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study, J. Phys. Chem. B., 2003, vol. 107, p. 8557.
  30. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., The role of the surface structure in the oxidation mechanism of methanol, J. Electroanal. Chem., 2011, vol. 662, p. 43.
  31. Clavilier, J., Pulsed linear sweep voltammetry with pulses of constant level in a potential scale, demanding condition in the study of platinum single crystal electrodes, J. Electroanal. Chem., 1987, vol. 236, p. 87.
  32. Xu, W., Lu, T., Liu, C., and Xing, W., Supplement of the theory of normal pulse voltammetry and its application to the kinetic study of methanol oxidation on a polycrystalline platinum electrode, J. Phys. Chem., 2005, vol. 109, p. 7872.
  33. Murthy, A. and Manthiram, A., Electrocatalytic oxidation of methanol to soluble products on polycrystalline platinum: Application of convolutive potential sweep voltammetry in the estimation of kinetic parameters, Electrochim. Acta, 2011, vol. 56, p. 6078.
  34. Okamoto, H., Kon, W., and Mukouyama, Y., Five current peaks in voltammograms for oxidation of formic acid, formaldehyde and methanol on platinum, J. Phys. Chem. B., 2005, vol. 109, p. 15659.
  35. Chung, D.Y., Lee, K-J., and Sung, Y.-E., Methanol electrooxidation on the Pt surface: revisiting the cyclic voltammetry interpretation, J. Phys.Chem. C., 2016, vol. 120, p. 9028.
  36. Lee, Y.-W., Lee, J.-J., Kwak. D.-H., Hwang, E.-T., Jang, I.S., and Park, K.-W., Pd@Pt core-shell nanostructures for improved electrocatalytic activity in methanol oxidation reaction, Appl. Catal., B, 2015, vol. 179, p. 178.
  37. Hofstead-Duffy, A.M., Chen, O.J., Sun, S.G., and Tong, Y.J., Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to current ratio criterion, J. Mater. Chem., 2012, vol. 22, p. 5205.
  38. Vidakovich, T., Christov, M., and Sundmacher, K., Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode, J. Electroanal. Chem., 2005, vol. 580, p. 105.
  39. Petrii, O.A., Pt-Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.
  40. Bao, W.-Q., He, X.-D., Wang, Y., and He, J.-B., Diffusion-restriction electrodeposition of platinum on solid carbon paste for electrocatalytic oxidation of methanol, Catal.Today, 2016, vol. 264, p. 198.
  41. Piela, P., Fields, R., and Zelenay, P., Electrochemical impedance spectroscopy for direct methanol fuel cell diagnostics, J. Electrochem. Soc., 2006, vol. 153, p. A1902.
  42. Bruckenstein, S. and Gadde, R.R., Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products, J. Am. Chem. Soc., 1971, vol. 93, p. 793.
  43. Wolter, O. and Heitbaum, J., Differential electrochemical mass spectrometry (DEMS)–a new method for the study of electrode processes, Ber. Bunsen-Ges., 1984, vol. 88, p. 2.
  44. Willsau, J., Wolter, O., and Heitbaum, J., On the nature of the adsorbate during methanol oxidation at platinum, J. Electroanal. Chem., 1985, vol. 185, p. 163.
  45. Hartung, T. and Baltruschat, H., Differential electrochemical mass spectrometry using smooth electrodes: adsorption and H/D-exchange reactions of benzene on Pt, Langmuir, vol. 6, p. 953.
  46. Wang, H., Loffler, T., and Baltruschat, H., Formation of intermediates during methanol oxidation: A quantitative DEMS study, J. Appl. Electrochem., 2001, vol. 31, p. 759.
  47. Wonders, A.H., Housmans, T.H.M., Rosca, V., and Koper, M.T.M. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration, J. Appl. Electrochem., 2006, vol. 36, p. 1215.
  48. Lu, J., Hua, X., and Long, Y.-T., Recent advances in real-time and in situ analysis of an electrode-electrolyte interface by mass spectrometry, Analyst, 2017, vol. 142, p. 691.
  49. Willsau, J. and Heitbaum, J., Analysis of adsorbed intermediates and determination of surface potential shifts by DEMS, Electrochim. Acta, 1986, vol. 31, p. 943.
  50. Chen, Y.-X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetic isotope effects in complex reaction networks: formic acid electrooxidation, Chem., Phys. Chem., 2007, vol. 8. p. 380.
  51. Jusys, Z. and Behm, R.J., DEMS analysis of small organic molecule electrooxidation: a high-temperature high-pressure DEMS study, ECS Trans., 2008, vol. 16, p. 1243.
  52. Baltruschat H., Differential electrochemical mass spectrometry, J. Am. Soc. Mass Specrom., 2004, vol. 15, p. 1693.
  53. Wang, H., Alden, L., DiSalvo, E.J., and Abruna, H.D., Electrocatalytic mechanism and kinetics of SOC oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3739.
  54. Wang, H., Rus, E., and Abruna, H.D., New doubleband-electrode channel flow differential electrochemical mass spectrometry cell: application for detecting product formation during methanol electrooxidation, Anal. Chem., 2010, vol. 82, p. 4319.
  55. Zhou, W., Jusys, Z., and Behm, R.J., Complete quantitative online analysis of methanol electrooxidation products via electron impact and electrospray ionization mass spectrometry, Anal. Chem., 2012, vol. 84, p. 5479.
  56. Cheng, S., Wu, Q., Dewald, H.D., and Chen, H., Online monitoring of methanol electrooxidation reactions by ambient mass spectrometry, J. Am. Soc. Mass Spectrom., 2017, vol. 28, p. 1005.
  57. Bewick, A., Beden, B., Lamy, C., and Kunimatzu, K., Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species, Electroanal. Chem., 1981, vol. 121, p. 343.
  58. Osawa, M., Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn., 1997, vol. 70, p. 2861.
  59. Chen, W., Cai, J., Yang, J., Sartin, M.M., and Chen, Y.-X., The kinetics of methanol oxidation at a Pt film electrode, a combining mass and infrared spectroscopic study, J. Electroanal. Chem., 2017, vol. 800, p. 89
  60. Heinen, M., Chen, Y.X., Jusys, Z., and Behm, R.J., In situ ATR-FTIRS coupled with on-line DEMS under controlled mass transfer conditions–A novel tool for electrocatalytic reaction study, Electrochim. Acta, 2007, vol. 52, p. 5634.
  61. Pronkin, S. and Wandlowski, Th., ATR-SEIRAS approach to probe the reactivity of Pd-modified quasisingle crystal gold film electrodes, Surf. Sci., 2004, vol. 573, p. 109.
  62. Pronkin, S., Hara, M., and Wandlowski, T., Electrocatalytic properties of Au(111)-Pd quasi-single crystal film electrodes as probed by ATR-SEIRAS, Russ. J. Electrochem., 2006, vol. 42, p. 1177.
  63. Xu, Q., Pobelov, I.V., Wandlowski, T., and Kuzume, A., ATR-SEIRAS study of formic acid adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1M H2SO4, J. Electroanal. Chem., 2017, vol. 793, p. 70.
  64. Wain, A.J. and O’Connell, M.A., Surface-enhanced vibrational spectroscopy at electrochemical interfaces, Adv. Phys.: X, 2017, vol. 2, p. 188.
  65. Lazorenko–Manevich, R.M., Adatom hypothesis as a predominant mechanism of surface enhanced Raman scattering: A review of experimental argumentation, Russ. J. Electrochem., 2005, vol. 41, p. 799.
  66. Wu, D.-Y., Li, J.-F., Ren, B., and Tian, Z.-Q., Electrochemical surface-enhanced Raman spectroscopy of nanostructures, Chem. Soc. Rev., 2008, vol. 37, p. 1025.
  67. Leung, L.-W.H. and Weaver, M.J., Extending surfaceenhanced Raman spectroscopy to transition-metal interfaces: carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes, J. Am. Chem. Soc., 1987, vol. 109, p. 5113.
  68. Zou, S. and Weaver, M.J., Surface-enhanced scattering in uniform transition-metal films: toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces, Anal. Chem., 1998, vol. 70, p. 2387.
  69. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerscaan, R., and Tian, Z.-Q., Core-shell nanoparticle-enhanced Raman spectroscopy, Chem. Rev., 2017, vol. 117, p. 5002.
  70. Jeong, H. and Kim, J., Insights into the electrooxidation mechanism of formic acid on Pt layers on Au examined by electrochemical SERS, J. Phys. Chem. C., 2016, vol. 120, p. 24271.
  71. Stamenkovich, V., Chou, K.C., Somorjai, G.A., Ross, P.N., and Markovic, N.M., Vibrational properties of CO at the Pt(111)-solution interface: The anomalous Stark-tuning slope, J. Phys. Chem. B., 2005, vol. 109, p. 678.
  72. Zhang, P., Wei, Y., Cai, J., Chen, Y.-X., and Tian, Z.-Q., Nonlinear Stark effect observed for carbon monoxide chemisorbed on gold core/palladium shell nanoparticles film electrodes, using in situ surface-enhanced Raman spectroscopy, Chin. J. Catal., 2016, vol. 37, p. 1156.
  73. Beltramo, G.L., Shubina, T.E., and Koper, M.T.M., Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT, Chem., Phys. Chem., 2005, vol. 6, p. 2597.
  74. Loupe, M., Dean, J., and Smotkin, E.S., Twenty years of operando IR, X-ray absorption and Raman spectroscopy: direct methanol and hydrogen fuel cell, Catal. Today, 2017, vol. 283, p. 11.
  75. Behrens, R.L., Lagutchev, A., Dlott, D.D., and Wieckowski, A., Broad-band sum frequency generation study of formic acid chemisorptions on Pt(100) electrode, J. Electroanal. Chem., 2010, vol. 649, p. 32.
  76. Tong, Y., Cai, K., Wolf, M., and Campen, R.K., Probing the electrooxidation of weakly adsorbed formic acid on Pt(100), Catal. Today, 2016, vol. 260, p. 66.
  77. Lai, S.C.S., Lebedeva, N.P., Housmans, T.H.M., and Koper, M.T.M., Mechanism of carbon monoxide and methanol oxidation at single-crystal electrodes, Top. Catal., 2007, vol. 46, p. 320.
  78. Kua, J. and Goddard III, W.A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells, J. Am. Chem. Soc., 1999, vol. 121, p. 10928.
  79. Ishikawa, Y., Liao, M.-S., and Cabrera, C.R., Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study, Surf. Sci., 2000, vol. 463, p. 66.
  80. Desai, S.K., Neurock, M., and Kourtakis, K., A periodic density functional theory study of the dehydrogenation of methanol over Pt(111), J. Phys. Chem. B, 2002, vol. 106, p. 2559.
  81. Okamoto, Y., Sugino, O., Mochizuki, Y., Ikeshoji, T., and Morikawa, Y., Comparative study of dehydrogenation of methanol at Pt(111)/water and Pt(111)/vacuum interfaces, Chem. Phys. Lett., 2003, vol. 377, p. 236.
  82. Greely, J. and Mavrikakis, M., Competitive paths for methanol decomposition on Pt(111), J. Am. Chem. Soc., 2004, vol. 126, p. 3910.
  83. Shubina, T.E., Hartnig, C., and Koper, M.T.M., Density functional theory study of the oxidation of CO by OH on Au(110) and Pt(111) surfaces, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 4215.
  84. Cao, D., Lu, G.Q., Wieckowski, A., Wasileski, S.A., and Neurock, M., Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach, J. Phys. Chem. B, 2005, vol. 109, p. 11622.
  85. Hartnig, C. and Spohr, E., The role of water in the initial steps of methanol oxidation on Pt(111), Chem. Phys., 2005, vol. 319, p. 185.
  86. Kandoi, S., Greeley, J., Sanchez-Castillo, M.A., Evans, S.T., Gonhale, A.A., Dumesic, J.A., and Mavrikakis, M., Prediction of experimental methanol decomposition rates on platinum from first principles, Top. Catal., 2006, vol. 37, p. 17.
  87. Janik, M.J., Taylor, C.D., and Neurock, M., First principles analysis of the electrooxidation of methanol and carbon monoxide, Top. Catal., 2007, vol. 46, p. 306.
  88. Hartnig, C., Grimminger, J., and Spohr, E., The role of water in the initial steps of methanol oxidation on Pt(211), Electrochim. Acta, 2007, vol. 52, p. 2236.
  89. Hartnig, C., Grimminger, J., and Spohr, E., Adsorption of formic acid on Pt(111) in the presence of water, J. Electroanal. Chem., 2007, vol. 607, p. 133.
  90. Ferrin, P., Njkelar, A.U., Greeley, J., Mavrikakis, M., and Rossmeisl, J., Reactivity descriptors for direct methanol fuel cell anode catalysts, Surf. Sci., 2008, vol. 602, p. 3424.
  91. Neurock, M., Janik, M., and Wieckowski, A., A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Discuss., 2008, vol. 140, p. 363.
  92. Wang, H.-F. and Liu, Z.-P., Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solution model, J. Phys. Chem. C, 2009, vol. 113, p. 17502.
  93. Ferrin, P. and Mavrikakis, M., Structure sensitivity of methanol electrooxidation on transition metals, J. Am. Chem. Soc., 2009, vol. 131, p. 14381.
  94. Schnur, S. and Gross, A., Challenges in the first-principles description of reactions in electrocatalysis, Catal. Today, 2011, vol. 165, p. 129.
  95. Rossmeisl, J., Ferrin, P., Tritsaris, G.A., Nilekar, A.U., Koh, S., Bai, S.E., Brankovic, S.R., Strasser, P., and Mavrikakis, M. Bifunctional anode catalysts for direct methanol fuel cell, Energy Environ. Sci., 2012, vol. 5, p. 8335.
  96. Zhong, W., Wang, R., Zhang, D., and Liu, C., Theoretical study of the oxidation of formic acid on the PtAu(111) surface in the continuum water solution phase, J. Phys. Chem. C, 2012, vol. 116, p. 24143.
  97. Luo, Q., Beller, M., and Jiao, H., Formic acid dehydrogenation on surfaces–A review of computational aspect, J. Theor. Comput. Chem., 2013, vol. 12, p. 1330001.
  98. Miller, A.V., Kaichev, V.V. Prosvirin, I.P., and Bukhtiyarov, V.I., Mechanistic study of methanol decomposition and oxidation on Pt(111), J. Phys. Chem. C, 2013, vol. 117, p. 8189.
  99. Braunchweig, B., Hibbitts, D., Neurock, M., and Wieckowski, A., Electrocatalysis: a direct alcohol fuel cell and surface science perspective, Catal. Today, 2013, vol. 202, p. 197.
  100. Anderson, A.B. and Asiri, H.A., Reversible potentials for steps in methanol and formic acid oxidation and CO2 reduction, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 10587.
  101. Scaranto, J. and Mavrikakis, M., Density functional theory studies of HCOOH decomposition on Pd(111), Surf. Sci., 2015, vol. 650, p. 111.
  102. Wang, X., Chen, L., and Li, B., A density functional theory study of methanol dehydrogenation on the PtPd3(111) surface, Int. J. Hydrogen Energy, 2015, vol. 40, p. 9656.
  103. Zhong, W., Qi, Y., and Dong. M., The ensemble effect of formic acid oxidation on platinum-gold electrode studied by first-principles calculations, J. Power Sources, 2015, vol. 278, p. 203.
  104. Fang Y.-H. and Liu. Z.-P., Tafel kinetics of electrocatalytic reactions: from experiment to first principles, ACS Catal., 2014, vol. 4, p. 4364.
  105. Ding, Q., Xu, W., Sang, P., Xu, J., Zhao, L., Xe, X., and Guo, W., Insight into reaction mechanisms of methanol on PtRu/Pt(111): a density functional study, Appl. Surf. Sci., 2016, vol. 369, p. 257.
  106. Gasper, R.J. and Ramasubramamian, A., Density functional theory studies of methanol decomposition reaction on graphene-supported Pt13 nanoclusters, J. Phys. Chem. C, 2016, vol. 120, p. 17498.
  107. Fang, Y.-H. and Liu, Z.-P., First principles Tafel kinetics of methanol oxidation on Pt(111), Surf. Sci., 2016, vol. 631, p. 42.
  108. Scaranto, J. and Mavrikakis, M., HCOOH decomposition on Pt(111): A DFT study, Surf. Sci., 2016, vol. 648, p. 201.
  109. Sakong, S. and Gross, A., The importance of the electrochemical environmental in the electrooxidation of methanol on Pt(111), ACS Catal., 2016, vol. 6, p. 5574.
  110. Wang, Q,-Y. and Ding, Y.-H., Mechanism of methanol oxidation on graphene-supported Pt: Defect is better or not?, Electrochim. Acta, 2016, vol. 216, p. 140.
  111. Sakong, S. and Gross, A., Methanol oxidation on Pt(111) from first-principles in heterogeneous and electrocatalysis, Electrocatalysis, 2017, vol. 8, p. 577.
  112. Ou, L. and Huang, J., DFT-based study in the optimal CH3OH decomposition pathways in aqueous-phase: Homolysis versus heterolysis, Chem. Phys. Lett., 2017, vol. 679, p. 66.
  113. Du, P., Wu, P., and Cai, C., Mechanism of methanol decomposition on the Pt3Ni surface: DFT study, J. Phys. Chem. C, 2017, vol. 127, p. 9348.
  114. Park, S., Xie, Y., and Weaver, M., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.
  115. Breiter, M.W., A study of intermediates adsorbed on platinized platinum during the steady-state oxidation of methanol, formic acid and formaldehyde, J. Electroanal. Chem., 1967, vol. 14, p. 407.
  116. Breiter, M.W., Role of adsorbed species for the anodic methanol oxidation on platinum in acidic electrolytes, Discuss. Faraday Soc., 1968, vol. 45, p. 79.
  117. Housmans, T.H.M., Wanders, A.H., and Koper, M.T.M., Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study, J. Phys. Chem. B, 2006, vol. 110, p. 10021.
  118. Chen, Y.X., Miki, A., Ye, S., Sakai, H., and Osawa, M., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc., 2003, vol. 125, p. 3680.
  119. Cuesta, A., At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum, J. Am. Chem. Soc., 2006, vol. 128, p. 13332.
  120. Cuesta, A., Escudero, M., Lanova, B., and Baltruschat, H., Cyclic voltammetry, FTIRS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt(111) electrodes, Langmuir, 2009, vol. 25, p. 6500.
  121. Kunimatsu, K., Hanawa, N., Uchida, H., and Watanabe, M., Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry, J. Electroanal. Chem., 2009, vol. 632, p. 109.
  122. Franaszsczuk K., Herrero E., Zelenay P., Wieckowski A., Wang J., and Masel R.I., A comparison of electrochemical and gas-phase decomposition of methanol on platinum surfaces, J. Phys. Chem. B, 1992, vol. 96, p. 8509.
  123. Lebedeva, N.P., Koper, M.T.M., Feliu, J.M., and van Santen, R.A., Mechanism and kinetic of the electrochemical CO adlayer oxidation on Pt(111), J. Electroanal. Chem., 2002, vol. 524–525, p. 242.
  124. Sriramulu, S., Jarvi, T.D., and Stuve, E.M., Reaction mechanism and dynamics of methanol electrooxidation on platinum (111), J. Electroanal. Chem., 1999, vol. 467, p. 132.
  125. Batista, E.A., Malpass, G.R.P., Motheo, A.J., and Iwasita, T., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem., 2004, vol. 571, p. 273.
  126. Wang, H. and Baltruschat, H., DEMS study on methanol oxidation at poly-and monocrystalline platinum electrodes: the effects of anion, temperature, surface structure, Ru adatoms and potential, J. Phys. Chem. C, 2007, vol. 111, p. 7038.
  127. Mostafa, E., Abd-El-Latif, A.A., and Baltruschat, H., Electrocatalytic oxidation and adsorption rate of methanol at Pt stepped single-crystal electrodes and effect of Ru step decoration: A DEMS study, Chem., Phys. Chem., 2014, vol. 15, p. 2029.
  128. Liao, L.W., Liu, S.X., Tao, Q., Geng, B., Zhang, P., Wang, C.M., Chen, Y.X., and Ye, S., A method for kinetic study of methanol oxidation on Pt electrode by electrochemical in situ infrared spectroscopy, J. Electroanal. Chem., 2010, vol. 650, p. 233.
  129. Liu, S.X., Liao, L.W., Tao, Q., Chen, Y.X., and Ye, S., The kinetics of CO pathway in methanol oxidation at Pt electrode, a quantitative study by ATR-FTIR spectroscopy, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 9725.
  130. Tao, Q., Chen, W., Yao, Y., Yousaf, A.B., and Chen, Y.-X., Study of methanol oxidation at Pt and PtRu electrodes by combining in situ infrared spectroscopy and differential electrochemical mass spectrometry, Chin. J. Chem. Phys., 2014. doi 10.1063/1674-oo68/27/05/541-547
  131. Reichert, R., Schnaidt, J., Jusys, Z., and Behm, R.J., The influence of reactive side products in electrocatalytic reactions: methanol oxidation as case study, Chem. Phys. Chem., 2013, vol. 14, p. 3678.
  132. Reichert, R., Schnaidt, J., Jusys, Z., and Behm, R.J., The influence of reactive side products on the electrooxidation of methanol—a combined in situ infrared spectroscopy and on line mass spectrometry study, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13780.
  133. Seidel, Y.E., Schneider, A., Jusys, Z., Wiesman, B., Kasemo, B., and Behm, R.J., Mesoscopic mass transport effects in electrocatalytic processes, Faraday Discuss., 2008, vol. 140, p. 167.
  134. Majidi, P., Altarawnef, R.M., Ryan, N.D.W., and Pickup, P.G., Determination of the efficiency of methanol oxidation in a direct methanol fuel cell, Electrochim. Acta, 2016, vol. 199, p. 210.
  135. Iwasita, T. and Vielstich, W., On-line mass spectroscopy of volatile products during methanol oxidation at platinum in acid solutions, J. Electroanal. Chem., 1986, vol. 201, p. 403.
  136. Jusys, Z., Kaiser, J., and Behm, R.J., Methanol electrooxidation over Pt/C fuel cell catalysts: dependence of products yields on catalyst loading, Langmuir, 2003, vol. 19, p. 6759.
  137. Abd-El-Latif, A.A. and Baltruschat, H., Formation of methylformate during methanol oxidation revisited: The mechanism, J. Electroanal. Chem., 2011, vol. 662, p. 204.
  138. Wang, H., Alden, L.R., DiSalvo, F.J., and Abruna, H.D., Methanol electrooxidation on PtRu bulk alloys and carbon-supported PtRu nanoparticle catalysts: A quantitative DEMS study, Langmuir, 2009, vol. 25, p. 7725.
  139. Nakagawa, N., Sekimoto, K., Masdar, M.S., and Noda, R., Reaction analysis of a direct methanol fuel cell employing a porous carbon plate at high methanol concentrations, J. Power Sources, 2009, vol. 186, p. 45.
  140. Capon, A. and Parsons, R., The oxidation of formic acid at noble metal electrodes. Part III. Intermediates and mechanism on platinum electrodes, J. Electroanal. Chem., 1973, vol. 45, p. 205.
  141. Sun, S.G., Clavilier, J., and Bewick, A., The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: an EMIRS study, J. Electroanal. Chem., 1988, vol. 249, p. 147.
  142. Miki, A., Ye, S., and Osawa, M., Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions, Chem. Commun., 2002, p. 1500.
  143. Miyake, H., Okada, T., Samjeske, G., and Osawa, M., Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3662.
  144. Columbia, M.R. and Thiel, P.A., The interaction of formic acid with transition metal surfaces, studied in ultrahigh vacuum, J. Electroanal. Chem., 1994, vol. 369, p. 1.
  145. Samjeske, G. and Osawa, M., Current oscillations during formic acid oxidation on Pt electrode: insight into the mechanism by time-resolved IR spectroscopy, Angew. Chem., 2005, vol. 117, p. 5840.
  146. Samjeske, G., Miki, A., Ye, S., and Osawa, M., Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared spectroscopy, J. Phys. Chem. B, 2006, vol. 110, p. 16559.
  147. Osawa, M., Komatsu, K., Samjeski, G., Uchida, T., Ikeshoji, T., Cuesta, A., and Gutierrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem., Int. Ed., 2011, vol. 50, p. 1159.
  148. Cuesta, A., Cabello, G. Gutierrez, C., and Osawa, M., Adsorbed formate: the key intermediate of the oxidation of formic acid on platinum electrodes, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 20091.
  149. Cuesta, A., Cabello, G., Osawa, M., and Gutierrez, C., Mechanism of the electrocatalytic oxidation of formic acid on metals, ACS Catal., 2012, vol. 2, p. 728.
  150. Grozovski, V., Vidal-Iglesias, F.J., Herrero, E., and Feliu, J.M., Adsorption of formate and its role as intermediate in formic acid oxidation on platinum electrodes, Chem., Phys. Chem., 2011, vol. 12, p. 1641.
  151. Wieckowski, A. and Sobkowski, J., Comparative of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution, J. Electroanal. Chem., 1975, vol. 63, p. 365.
  152. Chen, Y., Heinen, M., Jusys, Z., and Behm, R., Kinetics and mechanism of the electrooxidation of formic acid–Spectroscopical study in a flow cell, Angew. Chem., Int. Ed., 2006, vol. 45, p. 981.
  153. Chen, Y.-X., Heinen, M., Jusys, Z., and Behm, R.J., Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode, Langmuir, 2006, vol. 22, p. 10399.
  154. Chen, Y.X., Ye, S., Heinen, M., Jusys, Z., Osawa, M., and Behm, R.J., Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures, J. Phys. Chem. B, 2006, vol. 110, p. 9534.
  155. Chen, Y.-X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetic isotope effects in complex reaction networks: formic acid electrooxidation, Chem., Phys. Chem., 2007, vol. 8, p. 380.
  156. Xu, J., Yuan, D.F., Yang, F., Mei, D., Zhang, Z., and Chen, Y.-X., On the mechanism of the direct path way formic acid oxidation at Pt(111) electrodes, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 4367.
  157. Okamoto, H., Numata, Y., Gojuki, T., and Mukouyama, Y., Different behavior of adsorbed bridgebonded formate from that of current in the oxidation of formic acid on platinum, Electrochim. Acta, 2014, vol. 116, p. 263.
  158. Gao, W., Keith, J.A., Anton, J., and Jacob, T., Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111), J. Am. Chem. Soc., 2010, vol. 132, p. 18377.
  159. Gao, W., Mueller, J.E., Jiang, Q., and Jacob, T., The role of co-adsorbed CO and OH in the electrooxidation of formic acid on Pt(111), Angew. Chem., Int. Ed., 2012, vol. 51, p. 9448.
  160. Joo, J., Uchida, T., Cuesta, A., Koper, M.T.M., and Osawa, M., Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum, J. Am. Chem. Soc., 2012, vol. 135, p. 9991.
  161. Joo, J., Uchida, T., Cuesta, A., Koper, M.T.M., and Osawa, M., The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: A mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry, Electrochim. Acta, 2014, vol. 129, p. 127.
  162. Koper, M.T.M., Theory of multiple proton-electron transfer reactions and its implication to electrocatalysis, Chem. Sci., 2013, vol. 4, p. 2719.
  163. Mei, D., He, Z.D., Jiang, D.C., Cai, J., and Chen, Y.X., Modeling of potential oscillation during galvanostatic electrooxidation of formic acid at platinum electrode, J. Phys. Chem. C, 2014, vol. 118, p. 6335.
  164. Perales-Rondon, J.V., Herrero, E., and Feliu, J.M., Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes, Electrochim. Acta, 2014, vol. 140, p. 511.
  165. Brimaud, S., Solla-Gullon, J., Weber, I., Feliu, J.M., and Behm, R.J., Formic acid electrooxidation on noble-metal electrodes: role and mechanistic implication of pH, surface structure, and anion adsorption, ChemElectroChem, 2014, vol. 1, p. 1075.
  166. Perales-Rondon, J.V., Brimaud, S., Solla-Gullon, J., Herrero, E., Behm, R.J., and Feliu, J.M., Further insights into the formic acid oxidation mechanism on platinum: pH and anion adsorption effects, Electrochim. Acta, 2015, vol. 180, p. 479.
  167. Jiang, K., Zhang, H.-X., Zou, S., and Cai, W.-B., Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20360.
  168. Gao, W., Song, E.H., Jiang, Q., and Jacob, T., Revealing the active intermediate in the oxidation of formic acid on Au and Pt(111), Chem.-Eur. J., 2014, vol. 20, p. 11005.
  169. Qi, Y.Y., Li, J.J., Zhang, D.J., and Liu, C.B., Reexamination of formic acid decomposition on the Pt(111) surface in the absence and in the presence of water, from periodic DFT calculations, Catal. Sci. Technol., 2015, vol. 5, p. 3322.
  170. Schwarz, K.A., Sundararaman, R., Moffat, T.P., and Allison, T.C., Formic acid oxidation on platinum: a simple mechanistic study, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 20805.
  171. Cuesta, A., Cabello, G., Hartl, F.W., Escudero-Escriberro, M., Vaz-Dominguez, C., Kibler, L.A., Osawa, M., and Guttierrez, C., Electrooxidation of formic acid on gold: An ATR-SEIRAS study of the role of adsorbed formate, Catal. Today, 2013, vol. 202, p. 79.
  172. McPherson, I.J., Ash, P.A., Jacobs, R.M.J., and Vincent, K.A., Formate adsorption on Pt nanoparticles during formic acid electrooxidation: Insights from in situ infrared spectroscopy, Chem. Commun., 2016, vol. 52, p. 12665.
  173. Christensen, P.A., Hamnett, A., and Linares-Moya, D.J., The electro-oxidation of formate ions at a polycrystalline Pt electrode in alkaline solution: an in situ FTIR study, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 11739.
  174. John, J., Wang, H., Rus, E.D., and Abruna, H.D., Mechanistic studies of formate oxidation on platinum in alkaline medium, J. Phys. Chem. C, 2012, vol. 116, p. 5810.
  175. Jiang, J., Scott, J., and Wieckowski, A., Direct evidence of triple-path mechanism of formate electrooxidation on Pt black in alkaline media at varying temperature. Part I: The electrochemical studies, Electrochim. Acta, 2013, vol. 104, p. 124.
  176. Jusys, Z. and Behm, R.J., Dynamics of the interaction of formic acid with a polycrystalline Pt film electrode a time-resolved ATR-FTIR spectroscopy study at low potentials and temperatures, Electrocatalysis, 2017, vol. 8, p. 616.
  177. Uhm, S., Lee, H.J., and Lee, J., Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9326.
  178. Yu, X. and Pickup, P.G., Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation, Electrochem. Commun., 2009, vol. 11, p. 2012.
  179. Wang, J.-Y., Zhang, H.-X., Jiang, K., and Cai, W.-B., From HCOOH to CO on Pd electrodes: A surfaceenhanced infrared spectroscopic study, J. Am. Chem. Soc., 2011, vol. 133, p. 14876.
  180. Zhang, R.G., Liu, H.Y., Wang, B.J., and Ling, I.X., Insight into the preference of CO2 formation from HCOOH decomposition on Pd surface, J. Phys. Chem. C, 2012, vol. 116, p. 22266.
  181. Jeon, H., Jeong, B., Loo, J., and Lee, J., Electrocatalytic oxidation of formic acid: closing gap between fundamental study and technical applications, Electrocatalysis, 2015, vol. 6, p. 20.
  182. Wang, Y., Qi, Y., Zhang, D., and Liu, C., New insight into decomposition of formic acid on Pd(111): Competing formation of CO and CO2, J. Phys. Chem. C, 2014, vol. 118, p. 2067.
  183. Capon, A. and Parsons, R., The oxidation of formic acid on noble metal electrodes. II. A comparison of the behavior of pure electrodes, J. Electroanal. Chem., 1973, vol. 44, p. 239.
  184. Arenz, M., Stamenkovic, V., Schmidt, T.J., Wandelt, K., Ross, P.N., and Markovic, N.M., The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces, Phys. Chem. Phys. Chem., 2003, vol. 5, p. 4242.
  185. Zhang, H.X., Wang, S.H., Jiang, K., Andre, T., and Cai, W.B., In situ spectroscopic investigation of CO accumulation and poisoning on Pt black surfaces in concentrated HCOOH, J. Power Sources, 2012, vol. 199, p. 163.
  186. Obradovic, M.D. and Gojkovic, S.Lj., HCOOH oxidation on thin Pd adlayers on Au: Self-poisoning by the subsequent reaction of the reaction product, Electrochim. Acta, 2013, vol. 88, p. 384
  187. Vidal-Iglesias, F.J., Aran-Aris, R.M., Solla-Gullon, J., Garnier, E., Herrero, E., Aldaz, A., and Feliu, J.M., Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 10258.
  188. Obradovic, M.D. and Gojkovic, S.L., Pd black decorated by Pt sub-monolayers as an electrocatalyst for the HCOOH oxidation, J. Solid State Electrochem., 2014, vol. 18, p. 2599.
  189. Chen, X. and Koper, M.T.M., Mass-transport-limited oxidation of formic acid on Pd ML Pt(100) electrode in perchloric acid, Electrochem. Commun., 2017, vol. 82, p. 155.
  190. Haan, J.L. and Masel, R.T., The influence of solution pH on rates of an electrocatalytic reactions: Formic acid electrooxidation on platinum and palladium, Electrochim. Acta, 2009, vol. 54, p. 4073.
  191. Joo, J., Choun, N., Jeong, J., and Lee, J., Influence of solution pH on Pt anodic catalyst in direct formic acid fuel cells, ACS Catal., 2015, vol. 5, p. 6848.
  192. Abdelrahman, A., Hermann, J.M., and Kibler, L.A., Electrocatalytic oxidation of formate and formic acid on platinum and gold: study of pH dependence with phosphate buffers, Electrocatalysis, 2017, vol. 8, p. 509.
  193. Jiang, K., Wang, J.-Y., Zhao, T.-T., and Cai, W.-B., Formic acid oxidation on palladium electrode in acidic media containing chloride anions: An in situ ATRSEIRAS investigation, J. Electroanal. Chem., 2017, vol. 800, p. 77.
  194. Wetzel, R., Günther, H., and Müller, L., A switch effect in the oxidation behavior of formate on Pt in alkaline solution, J. Electroanal. Chem., 1979, vol. 103, p. 271.
  195. Günther, H., Wetzel, R., and Müller, L., A new method for pH measurement in the immediate vicinity of the electrode surface, Electrochim. Acta, 1979, vol. 24, p. 237.
  196. Liao, L.W., Li, M.F., Kang, J., Chen, D., Chen, Y.-X., and Ye, S., Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes, J. Electroanal. Chem., 2013, vol. 688, p. 207.
  197. Wei, Y., Zuo, K.Q., He, Z.D., Chen, W., Lin, C.H., Cai, J., Sartin, M., and Chen, Y.-X., The mechanisms of HCOOH/HCOO–oxidation on Pt electrodes: Implication from pH effect and H/D kinetic isotope effect, Electrochem. Commun., 2017, vol. 81, p. 1.
  198. Subbaraman, R., Danilovic, N., Lopes, P., Tripkovic, D., Strmcnik, D., Stamenkovic, V., and Markovic, N., Origin of anomalous activities for electrocatalysts in alkaline electrolytes, J. Phys. Chem. C, 2012, vol. 16, p. 22231.
  199. Strmcnik, D., Kodama, K., van der Vliet, D., Greely, J., Stamenkovic, V.B., and Markovic, N.M., The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum, Nat. Chem., 2009, vol. 1, p. 466.
  200. Dunwell, M., Wang, J., Yan, Y., and Xu, B., Surface enhanced spectroscopic investigation of adsorption of cations on electrochemical surfaces, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 971.
  201. Previdello, B.A., Machado, E.G., and Varela, H., The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum, RSC Adv., 2014, vol. 4, p. 15271.
  202. McCrum, I.T. and Janik, M.J., pH and alkali cation effects in the Pt cyclic voltammogram explained using density functional theory, J. Phys. Chem. C, 2016, vol. 120, p. 457.
  203. Nagao, R., Epstein, I.R., Gonzalez, E.R., and Varela, H., Temperature (over)compensation in an oscillatory surface reaction, J. Phys. Chem. A, 2008, vol. 112, p. 4617.
  204. Angelucci, C.A., Varela, H., Herrero, E., and Feliu, J.M., Activation energies of the electrooxidation of formic acid on Pt(100), J. Phys. Chem. C, 2009, vol. 113, p. 18835.
  205. Gilman, S., The mechanism of electrochemical oxidation of carbon monoxide on platinum. II. The “reactant pair” mechanism for electrochemical oxidation of carbon monoxide and methanol, J. Phys. Chem., 1964, vol. 68, p. 70.
  206. Garcia, G. and Koper, M.T.M., Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cell, Chem. Phys. Chem., 2011, vol. 12, p. 2064.
  207. Herrero, E., Feliu, J.M., Bluis, S., Radovic-Hrapovic, Z., and Jerkiewicz, G., Temperature dependence of COchemisorptions and its oxidative desorption on Pt(111) electrode, Langmuir, 2000, vol. 16, p. 4779.
  208. Garcia, G. and Koper, M.T.M., Mechanism of electrooxidation of carbon monoxide on stepped platinum electrodes in alkaline media: A chronoamperometric and kinetic modeling study, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 11437.
  209. Kunimatsu, K., Sato, T., Uchida, H., and Watanabe, M., Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-SEIRAS methods: Oxidation of CO adsorbed on carbon supported Pt catalyst and unsupported Pt black, Langmuir, 2008, vol. 24, p. 3590.
  210. Samjeske, G., Komatsu, K., and Osawa, M., Dynamics of CO oxidation on a polycrystalline platinum electrode: a time-resolved infrared study, J. Phys. Chem. C, 2009, vol. 113, p. 10222.
  211. Zhu Y., Uchida H., and Watanabe M., Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique, Langmuir, 1999, vol. 15, p. 8757.
  212. Breiter, M.W., Adsorption and oxidation of carbon monoxide on platinized platinum, J. Phys. Chem., 1968, vol. 72, p. 1305
  213. Cuesta, A., The oxidation of adsorbed CO on Pt(100) electrodes in the pre-peak region, Electroanalysis, 2010, vol. 1, p. 7.
  214. Cuesta, A., Electrooxidation of C1 organic molecules on Pt electrodes, Curr. Opin. Electrochem., 2017, vol. 4, p. 32.
  215. Strmcnik, D.S., Tripcovic, D.V., van der Vliet, D., Chang, K.-C., Kominicky, V., You, H., Karapetov, G., Greely, J.P., Stamenkovic, V.R., and Markovic, N.M., Unique activity of platinum adislands in the CO electrooxidation reaction, J. Am. Chem. Soc., 2008, vol. 130, p. 15332.
  216. Farias, M.J.S., Camara, G.A., and Feliu, J.M., Understanding the CO preoxidation and the intrinsic catalytic activity of step sites on stepped Pt surfaces in acidic medium, J. Phys. Chem. C, 2015, vol. 119, p. 20272.
  217. Yan, Y.-G., Yang, Y.-Y.,Peng, B., Malkhandi, S., Band, A., Stimming, U., and Cai, W.-B., Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS, J. Phys. Chem. C, 2011, vol. 115, p. 16378.
  218. Brimaud, S., Pronier, S., Coutanceau, C., and Leger, J.M., New insights on CO electrooxidation at Pt nanoparticle surfaces, Electrochem. Commun., 2008, vol. 10, p. 1703.
  219. Urchaga, P., Baranton, S., Coutanceau, C., and Jerkiewiez, G., Electrooxidation of COchem.on Pt nanosurfaces: Solution of the peak multiplicity puzzle, Langmuir, 2012, vol. 28, p. 3658.
  220. Wang, H., Jusys, Z., Behm, R.J., and Abruna, H.D., New insights into the mechanism and kinetics of adsorbed CO electrooxidation on platinum: online mass spectroscopy and kinetic Monte Carlo simulation studies, J. Phys. Chem. C, 2012, vol. 116, p. 11040.
  221. Wang, H. and Abruna, H.D., Origin of multiple peaks in potentiodynamic oxidation of CO adlayers on Pt and Ru-modified Pt electrodes, J. Phys. Chem. Lett., 2015, vol. 6, p. 1899.
  222. Farias, M.J.S., Buso-Rogero, C., Vidal-Iglesias, F.J., Solla-Gullon, J., Camara, G.A., and Feliu, J.M., Mobility and oxidation of adsorbed CO on shape-controlled Pt nanoparticles in acidic medium, Langmuir, 2017, vol. 33, p. 865.
  223. Lebedeva, N.P., Koper, M.T.M., Feliu, J.M., and van Santen, R.A., Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes, J. Phys. Chem. B, 2002, vol. 106, p. 12938.
  224. McCallum, C. and Pletcher, D., An investigation of the mechanism of the oxidation of carbon monoxide adsorbed onto a smooth Pt electrode in aqueous acid, J. Electroanal. Chem., 1976, vol. 70, p. 277.
  225. Chang, S.C. and Weaver, M.J., In-situ infrared spectroscopy of CO adsorbed at ordered Pt(110)-aqueous interfaces, Surf. Sci., 1990, vol. 230, p. 222.
  226. McPherson, I.J., Ash, P.A., Jones, L., Varambhia, A., Jacobs, R.M.J., and Vincent, K.A., Electrochemical CO oxidation at platinum on carbon studied through analysis of anomalous in situ IR spectra, J. Phys. Chem. C, 2017, vol. 121, p. 17176.
  227. Maillard, F., Savinova, E.R., and Stimming, U., CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects, J. Electroanal. Chem., 2007, vol. 599, p. 221.
  228. Podlovchenko, B.I., Manzhos, R.A., and Maksimov, Yu.M., Interaction of HCO-substances with adsorbed oxygen on platinum electrodes: open-circuit transient reactions of HCOOH and CO, Electrochim. Acta, 2005, vol. 50, p. 4807.
  229. Manzhos, R.A., Maksimov, Yu.M., and Podlovchenko, B.I., Transients of the open-circuit potential observed during the interaction of formic acid with preliminarily adsorbed oxygen on a platinized platinum electrode, Russ. J. Electrochem., 2005, vol. 41, p. 832.
  230. Manzhos, R.A., Podlovchenko, B.I., and Maksimov, Yu.M., Specific features of interaction between formic acid and oxygen adsorbed on smooth polycrystalline platinum: transients of the open-circuit potential, Russ. J. Electrochem., 2006, vol. 42, p. 658.
  231. Podlovchenko, B.I., Manzhos, R.A., and Maksimov, Yu.M., Kinetics and mechanism of interaction between methanol and adsorbed oxygen on a smooth polycrystalline platinum electrodes: transients of the open-circuit potential, Russ. J. Electrochem., 2006, vol. 42, p. 1061.
  232. Manzhos, R.A., Podlovchenko, B.I., and Maksimov, Yu.M., Specific features of methanol interaction with adsorbed oxygen at platinized platinum electrode: transients of open-circuits potential, Russ. J. Electrochem., 2007, vol. 43, p. 1268.
  233. Sitta, E. and Varela, H., On the open-circuit interaction between methanol and oxidized platinum, J. Solid State Electrochem., 2008, vol. 12, p. 554.
  234. Batista, B.C., Sitta, E., Eiswirth, M., and Varela, H., Autocatalysis in the open circuit interaction of alcohol molecules with oxidized Pt surfaces, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6686.
  235. Batista, B.C. and Varela, H., Open circuit interaction of formic acid with oxidized Pt surfaces: experiment, modeling and simulations, J. Phys. Chem. C, 2010, vol. 114, p. 18494.
  236. Tao, Q., Zheng, Y.-L., Jiang, D.-C., Chen, Y.-X., Jusys, Z., and Behm, R.J., Interaction of C1 molecules with Pt electrode at open circuit potential: a combined infrared and mass spectroscopic study, J. Phys. Chem. C, 2014, vol. 118, p. 6799.
  237. Jurzinsky, N., Kurzhals, P., and Crevers, C., A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic methanol oxidation reaction on oxygen reduction catalysts, J. Power Sources, 2018, vol. 389, p. 61.
  238. Climent, V. and Feliu, J.M., Surface electrochemistry with Pt single-crystal electrodes, in: Advances in Electrochemical Science and Engineering, Vol. 17, Nanopatterned and Nanoparticle-Modified Electrodes, Alkire, R.C., Bartlett, N., and Lipkowski, J. (Eds.), Weinheim: Wiley-VCH, 2017, p. 1.
  239. Motoo, S. and Furuya, N., Effect of terraces and steps in the electrocatalysis for formic acid oxidation on platinum, Ber. Bunsen-Ges., 1987, vol. 91, p. 457.
  240. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps, Chem., Phys. Chem., 2009, vol. 10, p. 1922.
  241. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8822.
  242. Koper, M.T.M., Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale, 2011, vol. 3, p. 2054.
  243. Cuesta, A., Atomic ensemble effects in electrocatalysis: The site-knockout strategy, Chem., Phys. Chem., 2011, vol. 12, p. 2375.
  244. Park, S., Xie, Y., and Weaver, M., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.
  245. Scheijen, F.J.E., Beltramo, G.L., Hoeppener, S., Housmans, T.H.M., and Koper, M.T.M., The electrooxidation of small organic molecules on platinum nanoparticles supported on gold: influence of platinum deposition procedure, J. Solid-State Electrochem., 2008, vol. 12, p. 483.
  246. Solla-Gullon, J., Vidal-Iglesias, F.J., Lopez-Cudero, A., Garnier, E., Feliu, J.M., and Aldaz, A., Shape-dependent electroocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3689.
  247. Lee, S.W., Chen, S., Sheng, W., Yabuuchi, N., Kim, Y.-T., Mitani, T., Vescovo, E., and Shao-Horn, Y., Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol, J. Am. Chem. Soc., 2009, vol. 131, p. 15669.
  248. Chumillas, S., Buso-Rogero, C., Solla-Gullon, J., Vidal-Iglesias, F.J., Herrero, E., and Feliu, J.M., Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles, Electrochem. Commun., 2011, vol. 13, p. 1194.
  249. Hoshi, N., Kida, K., Nakamura, M., Nakada, M., and Osada, K., Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium, J. Phys. Chem. B, 2006, vol. 110, p. 12480.
  250. Hoshi, N., Nakamura, M., and Kida, K., Structural effects on the oxidation of formic acid on the high index planes of palladium, Electrochem. Commun., 2007, vol. 9, p. 279.
  251. Zhou, W.P., Lewera, R., Larsen, R., Masel, R.I., Bagus, P.S., and Wieckowski, A., Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid, J. Phys. Chem. B, 2006, vol. 110, p. 13393.
  252. Zhou, W. and Lee, J.Y., Particle size effects in Pd-catalyzed electrooxidation of formic acid, J. Phys. Chem. C, 2008, vol. 112, p. 3789.
  253. Suo, Y. and Hsing, I.M., Size-controled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation, Electrochim. Acta, 2009, vol. 55, p. 210.
  254. Choi, S.-L., Harron, J.A., Scaranto, J., Huang, H., Wang, Y., Xia, X., Tian, Lv., Park. J., Peng, H.-C., Mavrikakis, M., and Xia, Y., A comprehensive study of formic acid on palladium nanocrystals with different types of facets and twin defects, ChemCatChem, 2011, vol. 7, p. 2077.
  255. Zheng, W., Qu, J., Hong, X., Tedsree, K., and Tsang, S.C.E., Probing the size and shape effects of cubic-and spherical-shaped palladium nanoparticles in the electrooxidation of formic acid, ChemCatChem, 2015, vol. 7, p. 3826.
  256. Ju, W., Valiollahi, R., Ojami, R., Schneider, O., and Stimming, U., The electrooxidation of formic acid on Pd hanoparticles: an investigation of size-dependent performance, Electrocatalysis, 2016, vol. 7, p. 149.
  257. Watanabe, M. and Motoo, S., Electrocatalysis by adatoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanalyt. Chem., 1975, vol. 60, p. 267.
  258. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized Pt-Ru alloys, J. Phys. Chem., 1993, vol. 97, p. 12029.
  259. Markovic, N., Gasteiger, H.A., Ross, P.N., Jiang, X., Villegas, I., and Weaver, M.J., Electro-oxidation mechanisms of methanol and formic acid on Pt–Ru alloy surfaces, Electrochim. Acta, 1995, vol. 40, p. 91.
  260. Gojkovic, S.Lj., Vidakovic, T.R., and Durovic, D.R., Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst, Electrochim. Acta, 2003, vol. 48, p. 3607.
  261. Tong, Y.Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., and Oldfield, E., An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc., 2002, vol. 124, p. 468.
  262. Pinheiro, A.L.N., Zei, M.S., and Ertl, G., Electrooxidation of carbon-monoxide and methanol on bare and Pt-modified Ru(1010) electrodes, Phys. Chem. Chem. Phys., 2005, vol. 7, p. 1300.
  263. Sawy, E.N., El-Sayed, H.A., and Birss, V., Clarifying the role of Ru in methanol oxidation at Rucore@Ptshell nanoparticles, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 27509.
  264. Du, B., Rabb, S.A., Zangmeister, C., and Tong, YY., A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 8231.
  265. Kuznetsov, A.N., Simonov, P.A., Zaikovskii, V.I., Parmon, V.N., and Savinova, E.R., Temperature effects in carbon monoxide and methanol electrooxidation on platinum-ruthenium: influence of grain boundaries, J. Solid State Electrochem., 2013, vol. 17, p. 1903.
  266. Rigsby, M.A., Zhou, W.P., Lewera, A., Duong, H.T., Bagus, P.S., Jaegermann, W., Hynger, R., and Wieckowski, A., Experiment and theory of fuel cell electrocatalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru, J. Phys. Chem. C, 2008, vol. 112, p. 15595.
  267. Islam, M., Basnayake, R., and Korzeniewski, C., A study of formaldehyde formation during methanol oxidation over PtRu bulk alloys and nanometer scale catalyst, J. Electroanal. Chem., 2007, vol. 599, p. 31.
  268. Liu, B.J., Jin, J.M., Lin, X., Hardacre, C., Hu, P., Ma, C.A., and Lin, W.F., The effects of stepped sites and ruthenium adatom decoration on methanol dehydrogenation over platinum based catalyst surfaces, Catal. Today, 2015, vol. 242, p. 230.
  269. Ding, Q., Xu, W., Sang, P., Xu, J., Zhao, L., Xe, X., and Guo, W., Insight into reaction mechanisms of methanol on PtRu/Pt(111): a density functional study, Appl. Surf. Sci., 2016, vol. 369, p. 257.
  270. Wang, K., Gasteiger, H.A., Markovic, N.M., and Ross, P.N., Jr., On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces, Electrochim. Acta, 1996, vol. 41, p. 2583.
  271. Colmati, F., Antolini, E., and Gonzalez, E.R., Electrocatalysts for methanol oxidation synthesized by reduction with formic acid, Electrochim. Acta, 2005, vol. 50, p. 5496.
  272. Wei, Z.D., Li, L.L., Luo, Y.H., Yan, C., Sun, C.X., Yin, G.Z., and Shen, P.K., Electrooxidation methanol on upd-Ru and upd-Sn modified Pt electrodes, J. Phys. Chem. B, 2006, vol. 110, p. 26055.
  273. Liu, P., Logadottir, A., and Norskov, J.K., Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn, Electrochim. Acta, 2005, vol. 48, p. 3734.
  274. Stevanovic, S., Tripkovic, D., Tripkovic, V., Minic, D., Gavrilovic, A., Tripkovic, A., and Jovanovic, V.M., Insight into the effect of Sn on CO and formic acid oxidation at PtSn catalysts, J. Phys. Chem. C, 2014, vol. 118, p. 278.
  275. Farias, M.J.S., Cheuquepan, W., Tanaka, A.A., and Feliu, J.M., Non-uniform synergistic effect of Sn and Ru in site-specific catalytic activity of Pt at bimetallic surfaces toward CO electrooxidation, ACS Catal., 2017, 10.1021/acscatal.7b00257
  276. Rizo, R., Pastor, E., and Koper, M.T.M., CO electrooxidation on Sn-modified Pt single crystals in acid media, J. Electroanal. Chem., 2017, vol. 80, p. 32.
  277. Lu, X., Ding, Z., Guo, C., Wang, W., Wei, S., Ng, S.-P., Chen, X., Ding, N., Guo, W., and Wu, C.-M.L., Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 12194.
  278. Tritsaris, G.A. and Rossmeisl, J., Methanol excitation on model elemental and bimetallic transition metal surfaces, J. Phys. Chem. C, 2012, vol. 116, p. 11980.
  279. Choi, J.H., Park, K.W., Park, I.S., Nam, W.H., and Sung, Y.E., Methanol electrooxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts, Electrochim. Acta, 2004, vol. 50, p. 787.
  280. Sheng, T. and Sun, S.-G., Insight into the promoting role of Rh doped on Pt(111) in methanol electro-oxidation, J. Electroanal. Chem., 2016, vol. 781, p. 24.
  281. Suntivich, J., Xu, Z., Carlton, C.E., Kim, J., Han, B., Lee, S.W., Bonnet, N., Mazzari, N., Allard, L.F., Hasteiger, H.A., Hamad–Schifferli, K., and Shao-Horn, Y., Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc., 2013, vol. 135, p. 7985.
  282. Conway, B.E., Angerstein-Kozlowska, H., and Czartoryska, G., “Third body” effect in the auto-inhibition of formic acid oxidation on electrodes, Z. Phys. Chem. N.F., 1978, vol. 112, p. 195.
  283. Leiva, E., Iwasita, T., Herrero, E., and Feliu, J.M., Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model, Langmuir, 1997, vol. 13, p. 6287.
  284. Vidal-Iglesias, F.J., Lopez-Cudero, A., Sulla-Gullon, J., and Feliu, J.M., Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony decorated octahedral platinum nanoparticles, Angew. Chem., Int. Ed., 2013, vol. 52, p. 964.
  285. Buso-Rogero, C., Peralles-Rondon, J.V., Farias, F.J., Vidal-Iglesias, F.J., Solla-Gullon, J., Herrero, E., and Feliu, J.M., Formic acid electrooxidation on thalliumdecorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13616.
  286. Ferre-Vilaplana, A., Perales-Rondon, J.V., Feliu, J.M., and Herrero, E., Understanding the effect of the adatoms in formic acid oxidation mechanism on Pt(111) electrodes, ACS Catal., 2015, vol. 5, p. 645.
  287. Perales-Rondon, J.V., Solla-Gullon, J., Herrero, E., and Sanchez-Sanchez, C.M., Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles, Appl. Catal., B, 2017, vol. 201, p. 2095.
  288. Yu, X. and Pickup, P.G., Pb and Sb modified Pt/C catalysts for direct formic acid fuel cell, Electrochim. Acta, 2010, vol. 55, p. 7354.
  289. Llorca, M.J., Feliu, J.M., Aldaz, A., and Clavilier, J., Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes, J. Electroanal. Chem., 1994, vol. 376, p. 151.
  290. Waszczuk, P., Barnard, T.M., Race, C., Masel, R.L., and Wieckowski, A., A nanoparticle catalyst with superior activity for electrooxidation of formic acid, Electrochem. Commun., 2002, vol. 4, p. 599.
  291. Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrooxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.
  292. Liu, B., Li, H.Y., Die, L., Zhang, X.-H., Fan, Z., and Chen, Y.H., Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation, J. Power Sources, 2009, vol. 186, p. 62.
  293. Vidal-Iglesias, F.J., Solla-Gullon, J., Herrero, E., Aldaz, A., and Feliu, J.M., Pd decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation, Angew. Chem., Int. Ed., 2010, vol. 49, p. 6998.
  294. Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W.B., Carbon-supported Pd-Pt nanoalloy with low Pt content and superior catalysis for formic acid electrooxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.
  295. Kim, J., Jung, C., Rhee, C.K., and Lim, T., Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111), Langmuir, 2007, vol. 23, p. 10831.
  296. Park, I.S., Lee, K.S., Choi, J.H., Park, H.Y., and Sung, Y.E., Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electrooxidation, J. Phys. Chem. C, 2007, vol. 111, p. 19126.
  297. Xu, J.B., Zhao, T.S., and Liang, Z.X., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cell, J. Power Sources, 2008, vol. 185, p. 857.
  298. Kristian, N. and Yu, Y.L., Ptshell-Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions, Electrochem. Commun., 2008, vol. 10, p. 12.
  299. Wang, S.Y., Kristian, N., Jiang, S.P., and Wang, X., Controlled deposition of Pt on Au nanorodes and their catalytic activity towards formic acid oxidation, Electrochem. Commun., 2008, vol. 10, p. 961.
  300. Kristian, N., Yu, Y.L., Gunawan, P, Xu, R., Deng, W., Liu, X., and Wang, X., Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation, Electrochim. Acta, 2009, vol. 54, p. 4916.
  301. Obradovich, M.D., Tripkovic, A.V., and Gojkovic, S.L., The origin of high activity of Pt-Au surfaces in the formic acid oxidation, Electrochim. Acta, 2009, vol. 55, p. 204.
  302. Liu, Y., Wang, L.W., Wang, G., Dong, C., Wu, B., and Gao, Y., High active carbon supported PdAu catalyst for formic acid electrooxidation and study of the kinetics, J. Phys. Chem. C, 2010, vol. 114, p. 21417.
  303. Obradovic, M.D., Rogan, J.R., Babic, B.M., Tripkovic, A.V., Guntam, A.R.S., Radmilovic, V.R., and Gojkovic, S.L., Formic acid oxidation on Pt–Au nanoparticles: relation between the catalyst activity and poisoning rate, J. Power Sources, 2012, vol. 197, p. 72.
  304. Yuan, D.W. and Liu, Z.R., Atomic ensemble effects on formic acid oxidation on PdAu electrode studied by first-principles calculations, J. Power Sources, 2013, vol. 224, p. 241.
  305. Zhong, W., Qi, Y. and Dong, M., The ensemble effect of formic acid oxidation on platinum-gold electrode studied by first-principles calculations, J. Power Sources, 2015, vol. 278, p. 203.
  306. Duan, T., Zhang, R., Ling, I., and Wang, B., Insights into the effect of Pt atomic ensemble on HCOOH oxidation over Pt-decorated Au bimetallic catalyst to optimize Pt utilization, J. Phys. Chem. C, 2016, vol. 120, p. 2234.
  307. Jeong, H. and Kim, J., Insights into the electrooxidation mechanism of formic acid on Pt layers on Au examined by Electrochemical SERS, J. Phys. Chem. C, 2016, vol. 120, p. 24271.
  308. Cellorio, V., Quaino, P.U., Santos, E., Florez-Montano, J., Humphray, J.J.L., Quillon-Villafuerte, O., Plana, D., Lazaro, M.J.,Pastor, E., and Fermin, D.J., Strain effects in the oxidation of CO and HCOOH on Au–Pd core–shell nanoparticles, ACS Catal., 2017, vol. 7, p. 3826.
  309. Wang, H., Alden, L., DiSalvo, E.J., and Abruna, H.D., Electrocatalytic mechanism and kinetics of SOC oxidation on ordered PtPb and PtBi intermetallic compound: DEMS and FTIRS study, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3739.
  310. Demirci U.B., Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquidfeed fuel cells, J. Power Sources, 2007, vol. 173, p. 11.
  311. Norskov, J.K., Bligaard, T., Rossmeisl, J., and Christensen, C.H., Towards the computational design of solid catalysts, Nat. Chem., 2009, vol. 1, p. 34.
  312. Calle-Vallejo, F., Koper, M.T.M, and Bandarenka, A.S., Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals, Chem. Soc. Rev., 2013, vol. 42, p. 5210.
  313. Koper, M.T.M., Volcano activity relationships for proton-coupled electron transfer reactions in electrocatalysis, Top. Catal., 2015, vol. 58, p. 1153.
  314. Sasikumar, G., Mathumeenal, A., Pethaiah, S.S., Nachiappen, N., and Balaji, R., Aqueous methanol electrolysis using proton conducting membrane for hydrogen production, Int. J. Hydrogen Energy, 2008, vol. 33, p. 5905.
  315. Cloutier, P.R. and Wilkinson, D.P., Electrolytic production of hydrogen from aqueous acidic methanol solutions, Int. J. Hydrogen Energy, 2010, vol. 35, p. 3967.
  316. Lamy, C., Guenot, B., Cretin, M., and Pourcelly, G., Kinetics analysis of the electrocatalytic oxidation of methanol inside DMFC working as a PEM electrolytic cell (PEMEC) to generate clean hydrogen, Electrochim. Acta, 2015, vol. 177, p. 352.