Стаття
2022

Compacts of Boron-Doped Synthetic Diamond: Acceleration of Cathodic Reactions by Plasma-Assisted and Electrochemical Treatment of the Electrodes


A. G. Krivenko A. G. Krivenko , R. A. Manzhos R. A. Manzhos , V. K. Kochergin V. K. Kochergin , A. S. Kotkin A. S. Kotkin , Yu. V. Pleskov Yu. V. Pleskov , M. D. Krotova M. D. Krotova , E. A. Ekimov E. A. Ekimov
Російський електрохімічний журнал
https://doi.org/10.1134/S1023193522050068
Abstract / Full Text

Diamond compacts were synthesized by thermobaric processing of graphite and amorphous boron mixtures under the conditions of the diamond thermodynamic stability (at a pressure of 8–9 GPa and temperature of ∼2500 K). The boron-doped diamond-compact electrode surface was modified by its subjecting to the action of cathodic, anodic, and cathodic–anodic electrolytic plasma formed under the applying of voltage pulses with amplitude up to 300 V in Na2SO4 aqueous solution. It was found by using rotating disc electrode that the applying of sole cathodic–anodic plasma provides negligible catalytic effect with respect to the oxygen reduction reaction. However, thus pre-processed electrode acquired significant electrocatalytical activity upon the cathodic treatment, with the consequence that the reaction of O2 reduction to H2O passed predominantly by the four-electron mechanism. At the same time, the cathodic polarization of the plasma-modified electrode produced no effect on the rate constant of the electron transfer in the [Ru(NH3)6]2+/3+ redox couple; yet, the rate constant in the [Fe(CN)6]4–/3– one increased significantly. Hypothetically, the observed electrocatalytical effect in the oxygen reduction reaction is due to the formation, under the combined action of the cathodic–anodic plasma and cathodic polarization, of quinone groups at the boron-doped diamond surface; they play the role of active sites for the oxygen four-electron reduction.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Russia

    A. G. Krivenko, R. A. Manzhos, V. K. Kochergin & A. S. Kotkin

  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. V. Pleskov & M. D. Krotova

  • Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 142190, Troitsk, Moscow, Russia

    E. A. Ekimov

References
  1. Pleskov, Yu.V., Sakharova, A.Ya., Krotova, M.D., Bouilov, L.L., and Spitsyn, B.V., Photoelectrochemical properties of semiconductor diamond, Sov. Electrochem., 1987, vol. 24, p. 69.
  2. Yang, N., Foord, J.S., and Jiang, X., Diamond electrochemistry at the nanoscale: A review, Carbon, 2016, vol. 99, p. 90. https://doi.org/10.1016/j.carbon.2015.11.061
  3. Cobb, S.J., Ayres, Z.J., and Macpherson, J.V., Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century, Ann. Rev. Anal. Chem., 2018, vol. 11, p. 463. https://doi.org/10.1146/annurev-anchem-061417-010107
  4. Yang, N., Yu, S., Macpherson, J.V., Einaga, Y., Zhao, H., Zhao, G., Swain, G.M., and Jiang, X., Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 2019, vol. 48, p. 157. https://doi.org/10.1039/c7cs00757d
  5. Pleskov, Y.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Electrochemical Behaviour of Boron-doped Diamond Compacts – a New Electrode Material, Electrochim. Acta, 2016, vol. 201, p. 268. https://doi.org/10.1016/j.electacta.2015.09.075
  6. Gao, F., Thomann, R., and Nebel, C.E., Aligned Pt–diamond core–shell nanowires for electrochemical catalysis, Electrochem. Commun., 2015, vol. 50, p. 32. https://doi.org/10.1016/j.elecom.2014.11.006
  7. Bian, L.Y., Wang, Y.H., Zang, J.B., Yu, J.K., and Huang, H., Electrodeposition of Pt nanoparticles on undoped nanodiamond powder for methanol oxidation electrocatalysts, J. Electroanal. Chem., 2010, vol. 644, p. 85. https://doi.org/10.1016/j.jelechem.2010.04.001
  8. Salazar-Banda, G.R., Eguiluz, K.I.B., and Avaca, L.A., Boron-doped diamond powder as catalyst support for fuel cell applications, Electrochem. Commun., 2007, vol. 9, p. 59. https://doi.org/10.1016/j.elecom.2006.08.038
  9. Wang, Y., Zang, J., Dong, L., Pan, H., Yuan, Y., and Wang, Y., Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell, Electrochim. Acta, 2013, vol. 113, p. 583. https://doi.org/10.1016/j.electacta.2013.09.091
  10. Ekimov, E.A., Sidorov, V.A., Maslakov, K.I., Sirotinkin, B.P., Krotova, M.D., and Pleskov, Yu.V., Influence of growth medium composition on the incorporation of boron in HPHT diamond, Diamond Related Mater., 2018, vol. 89, p. 101. https://doi.org/10.1016/j.diamond.2018.08.010
  11. Pleskov, Y.V., Krotova, M.D., Elkin, V.V., and Ekimov, E.A., Compacts of Boron-Doped Synthetic Diamond: Lowering of Synthesis Temperature and Its Effect on the Doping Level and Electrochemical Behavior, Russ. J. Electrochem., 2017, vol. 53, p. 1345. https://doi.org/10.1134/s1023193517120084
  12. Liu, Y., Zhang, Y., Cheng, K., Quan, X., Fan, X., Su, Y., Chen, S., Zhao, H., Zhang, Y., Yu, H., and Hoffmann, M.R., Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen–Co-doped Nanodiamond, Angew. Chem. Int. Ed., 2017, vol. 56, p. 15607. https://doi.org/10.1002/anie.201706311
  13. Hutton, L.A., Iacobini, J.G., Bitziou, E., Channon, R.B., Newton, M.E., and Macpherson, J.V., Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes, Anal. Chem., 2013, vol. 85, p. 7230. https://doi.org/10.1021/ac401042t
  14. Granger, M.C., Witek, M., Xu, J., Wang, J., Hupert, M., Hanks, A., Koppang, M.D., Butler, J.E., Lucazeau, G., Mermoux, M., Strojek, J.W., and Swain, G.M., Standard Electrochemical Behavior of High-Quality, Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, Anal. Chem., 2000, vol. 72, p. 3793. https://doi.org/10.1021/ac0000675
  15. Martin, H.B., Hydrogen and Oxygen Evolution on Boron-Doped Diamond Electrodes, J. Electrochem. Soc., 1996, vol. 143, p. L133. https://doi.org/10.1149/1.1836901
  16. Bennett, J.A., Wang, J., Show, Y., and Swain, G.M., Effect of sp 2-Bonded Nondiamond Carbon Impurity on the Response of Boron-Doped Polycrystalline Diamond Thin-Film Electrodes, J. Electrochem. Soc., 2004, vol. 151, p. E306. https://doi.org/10.1149/1.1780111
  17. Yano, T., Popa, E., Tryk, D.A., Hashimoto, K., and Fujishima, A., Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution, J. Electrochem. Soc., 1998, vol. 145, p. 1870. https://doi.org/10.1149/1.1838569
  18. Yano, T., Popa, E., Tryk, D.A., Hashimoto, K., and Fujishima, A., Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Acid Solution, J. Electrochem. Soc., 1999, vol. 146, p. 1081. https://doi.org/10.1149/1.1391724
  19. Dubrovinskaia, N., Wirth, R., Wosnitza, J., Papageorgiou, T., Braun, H. F., Miyajima, N., and Dubrovinsky, L., An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure, Proc. Nat. Acad. Sci., 2008, vol. 105, p. 11619. https://doi.org/10.1073/pnas.0801520105
  20. Ekimov, E.A., Ralchenko, V., and Popovich, A., Synthesis of superconducting boron-doped diamond compacts with high elastic moduli and thermal stability, Diamond Related Mater., 2014, vol. 50, p. 15. https://doi.org/10.1016/j.diamond.2014.09.001
  21. Vasiliev, V.P., Kotkin, A.S., Kochergin, V.K., Manzhos, R.A., and Krivenko, A.G., Oxygen reduction reaction at few-layer graphene structures obtained via plasma-assisted electrochemical exfoliation of graphite, J. Electroanal. Chem., 2019, vol. 851, p. 113440. https://doi.org/10.1016/j.jelechem.2019.113440
  22. Belkin, P.N., Yerokhin, A., and Kusmanov, S.A., Plasma electrolytic saturation of steels with nitrogen and carbon, Surf. Coat. Technol., 2016, vol. 307, p. 1194. https://doi.org/10.1016/j.surfcoat.2016.06.027
  23. Pleskov, Yu.V. and Filinovskii, V.Yu., The Rotating Disc Electrode, New York: Consultants Bureau, 1976.
  24. Qu, L.T., Liu,Y., Baek, J.B., and Dai, L.M., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano, 2010, vol. 4, p. 1321. https://doi.org/10.1021/nn901850u
  25. Jürmann, G. and Tammeveski, K., Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution, J. Electroanal. Chem., 2006, vol. 597, p. 119. https://doi.org/10.1016/j.jelechem.2006.09.002
  26. Duo, I., Levy-Clement, C., Fujishima, A., and Comninellis, C., Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment, J. Appl. Electrochem., 2004, vol. 34, p. 935. https://doi.org/10.1023/b:jach.0000040525.76264.16
  27. Krivenko, A.G., Manzhos, R.A., and Kochergin, V.K., Efect of Plasma-Assisted Electrochemical Treatment of Glassy Carbon Electrode on the Reversible and Irreversible Electrode Reactions, Russ. J. Electrochem., 2019, vol. 55, p. 663. https://doi.org/10.1134/S102319351907005X
  28. Ivandini, T.A., Watanabe, T., Matsui, T., Ootani, Y., Iizuka, S., Toyoshima, R., and Einaga, Y., Influence of the Surface Orientation on the Electrochemical Properties of Boron-Doped Diamond, J. Phys. Chem. C, 2019, vol. 123, p. 5336. https://doi.org/10.1021/acs.jpcc.8b10406
  29. Ghodbane, S., Ballutaud, D., Omnès, F., and Agnès, C., Comparison of the XPS spectra from homoepitaxial {111}, {100} and polycrystalline boron-doped diamond films, Diamond Related Mater., 2010, vol. 19, p. 630. https://doi.org/10.1016/j.diamond.2010.01.014
  30. Ryl, J., Cieslik, M., Zielinski, A., Ficek, M., Dec, B., Darowicki, K., and Bogdanowicz, R., High-Temperature Oxidation of Heavy Boron-Doped Diamond Electrodes: Microstructural and Electrochemical Performance Modification, Materials, 2020, vol. 13, p. 964. https://doi.org/10.3390/ma13040964
  31. Goeting, C.H., Marken, F., Gutiérrez-Sosa, A., Compton, R.G., and Foord, J.S., Electrochemically induced surface modifications of boron-doped diamond electrodes: an X-ray photoelectron spectroscopy study, Diamond Related Mater., 2000, vol. 9, p. 390. https://doi.org/10.1016/s0925-9635(99)00267-8
  32. Yokoya, T., Ikenaga, E., Kobata, M., Okazaki, H., Kobayashi, K., Takeuchi, A., Kobayashi, K., Kawarada, H., and Oguchi, T., Core-level electronic structure evolution of heavily boron-doped superconducting diamond studied with hard X-ray photoemission spectroscopy, Phys. Rev. B, 2007, vol. 75, p. 205117. https://doi.org/10.1103/physrevb.75.205117
  33. Girard, H., Simon, N., Ballutaud, D., Herlem, M., and Etcheberry, A., Effect of anodic and cathodic treatments on the charge transfer of boron doped diamond electrodes, Diamond Related Mater., 2007, vol. 16, p. 316. https://doi.org/10.1016/j.diamond.2006.06.009
  34. Mooste, M., Kibena-Põldsepp, E., Matisen, L., and Tammeveski, K., Oxygen Reduction on Anthraquinone Diazonium Compound Derivatised Multi-walled Carbon Nanotube and Graphene Based Electrodes, Electroanalysis, 2016, vol. 29, p. 548. https://doi.org/10.1002/elan.201600451
  35. Ayres, Z.J., Cobb, S.J., Newton, M.E., and Macpherson, J.V., Quinone electrochemistry for the comparative assessment of sp2 surface content of boron doped diamond electrodes, Electrochem. Commun., 2016, vol. 72, p. 59. https://doi.org/10.1016/j.elecom.2016.08.024
  36. Krivenko, A.G., Manzhos, R.A., Komarova, N.S., Kotkin, A.S., Kabachkov, E.N., and Shul’ga, Yu.M., Comparative Study of Graphite and the Products of Its Electrochemical Exfoliation, Russ. J. Electrochem., 2018, vol. 54, p. S32. https://doi.org/10.1134/S1023193518110058
  37. Regisser, F., Lavoie, M.-A., Champagne, G.Y., and Belanger, D., Randomly oriented graphite electrode. Part 1. Effect of electrochemical pretreatment on the electrochemical behavior and chemical composition of the electrode, J. Electroanal. Chem., 1996, vol. 415, p. 47. https://doi.org/10.1016/S0022-0728(96)04636-0
  38. Quan, M., Sanchez, D., Wasylkiw, M.F., and Smith, D.K., Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones, J. Am. Chem. Soc., 2007, vol. 129, p. 12847. https://doi.org/10.1021/ja0743083