Surface Modification of Glassy Carbon Electrode Using Hematoxylin and MWCNTs/Fe3O4/TiO2 Nanocomposite; a Sensitive Electrochemical Technique for Detection of Methyldopa in the Presence of Folic Acid

 Sakineh Esfandiari Baghbamidi Sakineh Esfandiari Baghbamidi
Російський електрохімічний журнал
Abstract / Full Text

A sensitive electrochemical sensor was developed by modifying a glassy carbon electrode (GCE) with hematoxylin and MWCNTs/Fe3O4/TiO2 nanocomposite for the improved detection of methyldopa in the presence of folic acid. Electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA) were used to describe the electrochemical performance of the hematoxylin–MWCNTs/Fe3O4/TiO2/GCE for methyldopa and folic acid sensing studies. Methyldopa and folic acid were detected by DPV method at 190  and 720 mV, respectively. Due to the synergistic effect of the hematoxylin and MWCNTs/Fe3O4/TiO2 nanocomposite, the modified electrode exhibited good sensing performance to methyldopa and folic acid in the range of 0.5–300  μM with detection limit of 0.02 μM. Also, this method was applied for the quantification of methyldopa and folic acid in real samples.

Author information
  • Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

    Sakineh Esfandiari Baghbamidi

  1. Conway, E.L., Louis, W.J., and Jarrott, B., The effect of acute α-methyldopa administration on catecholamine levels in anterior hypothalamic-preoptic and medullary nuclei in rat brain, Neuropharmacology, 1979, vol. 18, p. 279.
  2. Fouladgar, M. and Ahmadzadeh, S., Application of a nanostructured sensor based on NiO nanoparticles modified carbon paste electrode for determination of methyldopa in the presence of folic acid, Appl. Surf. Sci., 2016, vol. 379, p. 150.
  3. Unnikrishnan, B., Yang, Y.L., and Chen, S.M., Amperometric determination of folic acid at multi-walled carbon nanotube-polyvinyl sulfonic acid composite film modified glassy carbon electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 3224.
  4. Prasad, B.B., Madhuri, R., Tiwari, M.P., and Sharma, P.S., Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode, Sens. Actuators B: Chem., 2010, vol. 146, p. 321.
  5. Zhang, D., Ouyang, X., Ma, W., Li, L., and Zhang, Y., Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode, Electroanalysis, 2016, vol. 28, p. 312.
  6. Kalimuthu, P. and John, S.A., Selective electrochemical sensor for folic acid at physiological pH using ultrathin electropolymerized film of functionalized thiadiazole modified glassy carbon electrode, Biosens. Bioelectron., 2009, vol. 24, p. 3575.
  7. Shaw, G.M., Schaffer, D., Velie, E.M., Morland, K., and Harris, J.A., Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defects, Epidemiology, 1995, vol. 6, p. 219.
  8. Mulinare, J., Cordero, J.F., Erickson, J.D., and Berry, R.J., Periconceptional use of multivitamins and the occurrence of neural tube defects, Jama, 1988, vol. 260, p. 3141.
  9. Milunsky, A., Jick, H., Jick, S.S., Bruell, C.L., MacLaughlin, D.S., Rothman, K.J., and Willett, W., Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects, Jama, 1989, vol. 262, p. 2847.
  10. Salmanipour, A., Taher, M.A., and Beitollahi, H., Voltammetric behavior of a multi-walled carbon nanotube modified electrode-ferrocene electrocatalyst system as a sensor for determination of methyldopa in the presence of folic acid, Anal. Methods, 2012, vol. 4, p. 2982.
  11. Emara, S., Masujima, T., Zarad, W., Kamal, M., Fouad, M., and El-Bagary, R., A combination of isocratic and gradient elution modes in HPLC with the aid of time-overlapping process for rapid determination of methyldopa in human urine, J. Liq. Chromatogr. Relat. Technol., 2015, vol. 38, p. 153.
  12. El-Leithy, E.S., Abdel-Bar, H.M., and El-Moneum, R.A., Validation of high performance liquid chromatographic method for folic acid assay, Int. J. Pharm. Sci. Invent., 2018, vol. 7, p. 1.
  13. Zayed, A., Bustami, R., Alabsi, W., and El-Elimat, T., Development and validation of a rapid high-performance liquid chromatography-tandem mass spectrometric method for determination of folic acid in human plasma, Pharmaceuticals, 2018, vol. 11, p. 52.
  14. Gadkariem, E.A., Ibrahim, K.E.E., Kamil, N.A.A., Haga, M.E.M., and El-Obeid, H.A., A new spectrophotometric method for the determination of methyldopa, Saudi Pharm. J., 2009, vol. 17, p. 289.
  15. Li, X. and Chen, L., Fluorescence probe based on an amino-functionalized fluorescent magnetic nanocomposite for detection of folic acid in serum, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 31832.
  16. Nozaki, O., Iwaeda, T., Moriyama, H., and Kato, Y., Chemiluminescent detection of catecholamines by generation of hydrogen peroxide with imidazole, Luminescence, 1999, vol. 14, p. 123.
  17. Han, S. and Chen, X., Copper nanoclusters-enhanced chemiluminescence for folic acid and nitrite detection, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2019, vol. 210, p. 315.
  18. Uysal, U.D., Oncu-Kaya, E.M., and Tunçel, M., Determination of folic acid by CE in various cultivated variety of lentils, Chromatographia, 2010, vol. 71, p. 653.
  19. Sanati, A.L. and Faridbod, F., Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode, Int. J. Electrochem. Sci., 2017, vol. 12, p. 7997.
  20. Dehnavi, A. and Soleymanpour, A., Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide, Microchem. J., 2020, vol. 157, p. 104969.
  21. Senthilkumar, E., Shanmugharaj, A.M., Babu, R.S., Sundari, G.S., Kumar, K.T., Raghu, S., and Kalaivani, R., Development of constructed nanoporous graphene-modified electrode for electrical detection of folic acid, J. Mater. Sci. Mater. Electron., 2019, vol. 30, p. 13488.
  22. Chekin, F., Teodorescu, F., Coffinier, Y., Pan, G.H., Barras, A., Boukherroub, R., and Szunerits, S., MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum, Biosens. Bioelectron., 2016, vol. 85, p. 807.
  23. Karimi-Maleh, H., Karimi, F., Alizadeh, M., and Sanati, A.L., Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chem. Rec., 2020, vol. 20, p. 682.
  24. Tajik, S., Beitollahi, H., Garkani-Nejad, F., Kirlikovali, K.O., Van Le, Q., Jang, H.W., Varma, R.S., Farha, O.K., and Shokouhimehr, M., Recent electrochemical applications of metal–organic framework-based materials, Cryst. Growth Des., 2020, vol. 20, p. 7034.
  25. Payehghadr, M., Taherkhani, Y., Maleki, A., and Nourifard, F., Selective and sensitive voltammetric sensor for methocarbamol determination by molecularly imprinted polymer modified carbon paste electrode, Eurasian Chem. Commun., 2020, vol. 2, p. 982.
  26. Beitollahi, H., Tajik, S., Garkani-Nejad, F., and Safaei, M., Recent advances in ZnO nanostruture based electrochemical sensors and biosensors, J. Mater. Chem. B, 2020, vol. 8, p. 5826.
  27. Ershad, S. and Mofidi Rasi, R., Electrocatalytic oxidation of sulfite Ion at the surface carbon ceramic modified electrode with prussian blue, Eurasian Chem. Commun., 2019, vol. 1, p. 43.
  28. Yola, M.L. and Atar, N., Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer, Biosens. Bioelectron., 2019, vol. 126, p. 418.
  29. Karimi-Maleh, H., Karimi, F., Malekmohammadi, S., Zakariae, N., Esmaeili, R., Rostamnia, S., Yola, M.L., Atar, N., Movagharnezhad, S., Rajendran, S., Razmjou, A., Orooji, Y., Agarwal, S., Gupta, V.K., and Razmjou, A., An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples, J. Mol. Liq., 2020, vol. 310, p. 113185.
  30. Montazarolmahdi, M., Masrournia, M., and Nezhadali, A., A new electrochemical approach for the determination of phenylhydrazine in water and wastewater samples using amplified carbon paste electrode, Chem. Methodol., 2020, vol. 4, p. 732.
  31. Tajik, S., Beitollahi, H., and Biparva, P., Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, J. Serb. Chem. Soc., 2018, vol. 83, p. 863.
  32. Miraki, M., Karimi-Maleh, H., Taher, M.A., Cheraghi, S., Karimi, F., Agarwal, S., and Gupta, V.K., Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa, J. Mol. Liq., 2019, vol. 278, p. 672.
  33. Esfandiari-Baghbamidi, S., Beitollahi, H., Tajik, S., and Hosseinzadeh, R., Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, Int. J. Electrochem. Sci., 2016, vol. 11, p. 10874.
  34. Zare, H.R. and Nasirizadeh, N., Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode, Sens. Actuators B: Chem., 2010, vol. 143, p. 666.
  35. Litvin, V.A., Minaev, B.F., and Baryshnikov, G.V., Synthesis and properties of synthetic fulvic acid derived from hematoxylin, J. Mol. Struct., 2015, vol. 1086, p. 25.
  36. Sioi, M., Bolosis, A., Kostopoulou, E., and Poulios, I., Photocatalytic treatment of colored wastewater from medical laboratories: photocatalytic oxidation of hematoxylin, J. Photochem. Photobiol. A: Chem., 2006, vol. 184, p. 18.
  37. Mohammadi, S., Taher, M.A., and Beitollahi, H., Treated screen printed electrodes based on electrochemically reduced graphene nanoribbons for the sensitive voltammetric determination of dopamine in the presence of uric acid, Electroanalysis, 2020, vol. 32, p. 2036.
  38. Prasad, P. and Sreedhar, N.Y., Effective SWCNTs/Nafion electrochemical sensor for detection of dicapthon pesticide in water and agricultural food samples, Chem. Methodol., 2018, vol. 2, p. 277.
  39. Baghizadeh, A., Karimi-Maleh, H., Khoshnama, Z., Hassankhani, A., and Abbasghorbani, M., A voltammetric sensor for simultaneous determination of vitamin c and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode, Food Anal. Methods, 2015, vol. 8, p. 549.
  40. Khalilzadeh, M.A., Tajik, S., Beitollahi, H., and Venditti, R.A., Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): investigation of catalytic activity for the development of a venlafaxine electrochemical sensor, Ind. Eng. Chem. Res., 2020, vol. 59, p. 4219.
  41. Tajik, S., Beitollahi, H., Won Jang, H., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@polypyrrole–Pt core–shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.
  42. Karimi-Maleh, H., Alizadeh, M., Orooji, Y., Karimi, F., Baghayeri, M., Rouhi, J., Tajik, S., Beitollahi, H., Agarwal, S., Gupta, V.K., Rajendran, S., Rostamnia, S., Fu, L., Saberi-Movahed, F., and Malekmohammadi, S., Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation, Ind. Eng. Chem. Res., 2021, vol. 60, p. 816.
  43. De Volder, M.F., Tawfick, S.H., Baughman, R.H., and Hart, A.J., Carbon nanotubes: present and future commercial applications, Science, 2013, vol. 339, p. 535.
  44. Bozal-Palabiyik, B., Dogan-Topal, B., Uslu, B., Can, A., and Ozkan, S.A., Sensitive voltammetric assay of etoposide using modified glassy carbon electrode with a dispersion of multi-walled carbon nanotube, J. Solid State Electrochem., 2013, vol. 17, p. 2815.
  45. Banks, C.E., Crossley, A., Salter, C., Wilkins, S.J., and Compton, R.G., Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes, Angew. Chem. Int. Ed., 2006, vol. 45, p. 2533.
  46. Tahernejad-Javazmi, F., Shabani-Nooshabadi, M., and Karimi-Maleh, H., Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte, Talanta, 2018, vol. 176, p. 208.
  47. Cardoso, R.M., Montes, R.H., Lima, A.P., Dornellas, R.M., Nossol, E., Richter, E.M., and Munoz, R.A., Multi-walled carbon nanotubes: size-dependent electrochemistry of phenolic compounds, Electrochim. Acta, 2015, vol. 176, p. 36.
  48. Li, X., Chen, Z., Zhong, Y., Yang, F., Pan, J., and Liang, Y., Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip, Anal. Chim. Acta, 2012, vol. 710, p. 118.
  49. Karimi-Maleh, H., Cellat, K., Arıkan, K., Savk, A., Karimi, F., and Şen, F., Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing, Mater. Chem. Phys., 2020, vol. 250, p. 123042.
  50. Jain, R. and Sharma, S., Glassy carbon electrode modified with multiwalled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems, J. Pharm. Anal., 2012, vol. 2, p. 56.
  51. Chen, R., Song, G., and Wei, Y., Synthesis of variable-sized Fe3O4 nanocrystals by visible light irradiation at room temperature, J. Phys. Chem. C, 2010, vol. 114, p. 13409.
  52. Lu, A.H., Salabas, E.E., and Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 2007, vol. 46, p. 1222.
  53. Chavhan, P.M., Reddy, V., and Kim, C., Nanostructured titanium oxide platform for application to ascorbic acid detection, Int. J. Electrochem. Sci., 2012, vol. 7, p. 5420.
  54. Beitollahi, H. and Salimi, H., A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene, J. Electrochem. Soc., 2016, vol. 163, p. H1157.
  55. Bard, A.J. and Faulkner, L.R., Electrochemical Methods Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.
  56. Vahedi, J., Karimi-Maleh, H., Baghayeri, M., Sanati, A.L., Khalilzadeh, M.A., and Bahrami, M., A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples, Ionics, 2013, vol. 19, no. 12, p. 1907.
  57. Ensafi, A.A., Saeid, B., Rezaei, B., and Allafchian, A.R., Differential pulse voltammetric determination of methyldopa using MWCNTs modified glassy carbon decorated with NiFe2O4 nanoparticles, Ionics, 2015, vol. 21, no. 5, p. 1435.