Electrocatalytic Oxidation of Aromatic Ecopollutants on Composite Anodic Materials

T. A. Kenova T. A. Kenova , G. V. Kornienko G. V. Kornienko , V. L. Kornienko V. L. Kornienko
Russian Journal of Electrochemistry
Abstract / Full Text

Electrocatalytic oxidation of aromatic pollutants (aniline, Methyl Orange, Eriochrome blue SE) is studied on lead dioxide, boron doped diamond, and ruthenium- and titanium-oxide-based anodes (DSA, dimensionally stable anode). The catalytic properties of the tested materials are studied using cyclic voltammetry and galvanostatic electrolysis. The activity of electrodes toward the electrochemical conversion of organics is shown to increase in the sequence of DSA < lead dioxide < boron doped diamond. The oxidation rate decreases in the order of Eriochrome blue SE > Methyl Orange > aniline for all electrodes. The oxidation process of the compounds corresponds to the pseudo-first-order reaction kinetics. The apparent rate constant grows at an increase in the applied current density and decrease in the initial pollutant concentration. The formation of both OH and \({\text{SO}}_{4}^{{2\centerdot {\kern 1pt} - }}\) radicals is confirmed by the free radical quenching studies; their contribution to the Eriochrome blue SE dye destruction process is evaluated.

Author information
  • Institute of Chemistry and Chemical Technology, Federal Research Center “Krasnoyarsk Science Center,” Siberian Branch, Russian Academy of Sciences, 660036, Krasnoyarsk, Russia

    T. A. Kenova, G. V. Kornienko & V. L. Kornienko

  • Reshetnev Siberian State University of Science and Technology, 660049, Krasnoyarsk, Russia

    G. V. Kornienko

  1. O’Neill, C., Hawkes, F.R., Hawkes, D.L., Lourenço, N.D., Pinheiro, H.M., and Delée, W., Colour in textile effluents–sources, measurement, discharge consents and simulation: a review, J. Chem. Technol. Biotechnol., 1999, vol. 74, p. 1009.
  2. Dos Santos, A.B., Cervantes, F.J., and Van Lier, J.B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology, Bioresour. Technol., 2007, vol. 98, p. 2369.
  3. Sirés, I., Brillas, E., Oturan, M.A., Rodrigo, M.A., and Panizza, M., Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 2014, vol. 21, p. 8336.
  4. Kharlamova, T.A. and Aliev, Z.M., Use of electrolysis under pressure for destructive oxidation of phenol and azo dyes, Russ. J. Electrochem., 2016, vol. 52, p. 251.
  5. Kornienko, V.L., Chaenko, N.V., and Kornienko, G.V., Indirect electrochemical destructive oxidation of aromatic compounds with reactive oxygen species, Russ. J. Electrochem., 2007, vol. 43, p. 1243.
  6. Anglada, Á., Urtiaga, A., Ortiz, I., Mantzavinos, D., and Diamadopoulos, E., Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products, Water Res., 2011, vol. 45, p. 828.
  7. Pacheco, M.J., Santos, V., Ciríaco, L., and Lopes, A., Electrochemical degradation of aromatic amines on BDD electrodes, J. Hazard. Mater., 2011, vol. 186, p. 1033.
  8. Chaplin, B.P., Critical review of electrochemical advanced oxidation processes for water treatment applications, Environ. Sci.: Processes Impacts, 2014, vol. 16, p. 1182.
  9. Forgacs, E., Cserháti, T., and Oros, G., Removal of synthetic dyes from wastewaters: a review, Environ. Int., 2004, vol. 30, p. 953.
  10. Rodrigues, A.S., Nunes, M.J., Lopes, A., Silva, J.N., Ciríaco, L., and Pacheco, M.J., Electrodegradation of naphthalenic amines: Influence of the relative position of the substituent groups, anode material and electrolyte on the degradation products and kinetics, Chemosphere, 2018, vol. 205, p. 433.
  11. Martınez-Huitle, C.A. and Brillas, E., Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review, Appl. Catal. B: Environ., 2009, vol. 87, p. 105.
  12. Panizza, M. and Cerisola, G., Direct and mediated anodic oxidation of organic pollutants, Chem. Rev., 2009, vol. 109, p. 6541.
  13. Bu, L., Zhu, S., and Zhou, S., Degradation of atrazine by electrochemically activated persulfate using BDD anode: Role of radicals and influencing factors, Chemosphere, 2018, vol. 195, p. 236.
  14. Oturan, M.A., An ecologically effective water treatment technique using electrochemically generate hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D, J. Appl. Electrochem., 2000, vol. 30, p. 475.
  15. Martınez-Huitle, C.A. and Ferro, S., Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes, Chem. Soc. Rev. 2006, vol. 35, p. 1324.
  16. Comninellis, C., Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment, Electrochim. Acta, 1994, vol. 39, p. 1857.
  17. Marselli, B., Garcia-Gomez, J., Michaud, P.A., Rodrigo, M.A., and Comninellis, C., Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes, J. Electrochem. Soc., 2003, vol. 150, p. 79.
  18. Scialdone, O., Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: a simple theoretical model including direct and indirect oxidation processes at the anodic surface, Electrochim. Acta, 2009, vol. 54, p. 6140.
  19. Cañizares, P., Sáez, C., Sánchez-Carretero, A., and Rodrigo, M.A., Synthesis of novel oxidants by electrochemical technology, J. Appl. Electrochem., 2009, vol. 39, p. 2143.
  20. Kornienko, G.V., Chaenko, N.V., and Kornienko, V.L., Indirect electrochemical oxidation of N-methyl-n-aminophenol by active oxygen species generated in situ from O2, H2O, and H2O2, Russ. J. Appl. Chem, 2008, vol. 81, p. 1364.
  21. Fischer, H., Praktikum in allgemeiner Chemie: Ein umweltschonendes Programm für Studienanfänger mit Versuchen zur Chemikalien-Rückgewinnung. Teil 2. Organische und Physikalische Chemie, Zürich, 1995.
  22. Abd El Aal, E.E., Cyclic voltammetric behavior of the lead electrode in sodium sulfate solutions, J. Power Sources, 2001, vol. 102, p. 233.
  23. Zhang, B., Zhong, J., Li, W., Dai, Z., Zhang, B., and Cheng, Z., Transformation of inert PbSO4 deposit on the negative electrode of a lead-acid battery into its active state, J. Power Sources, 2010, vol. 195, p. 4338.
  24. He, Z., Hayat, M.D., Huang, S., Wang, X., and Cao, P., PbO2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation, J. Electroanal. Chem., 2018, vol. 812, p. 74.
  25. Santos, V., Diogo, J., Pacheco, M.J.A., Ciríaco, L., Morão, A., and Lopes, A., Electrochemical degradation of sulfonated amines on Si/BDD electrodes, Chemosphere, 2010, vol. 79, p. 637.
  26. Sato, Y., Hishimoto, K., Togashi, K., Yanagawa, H., and Kobayakawa, K., The effect of nicotinamide on the charge/discharge behavior of PbO2 electrode in sulfuric acid solution, J. Power Sources, 1992, vol. 39, p. 43.
  27. Li, X., Xu, H., Yan, W., and Shao, D., Electrocatalytic degradation of aniline by Ti/Sb–SnO2, Ti/Sb–SnO2/Pb3O4 and Ti/Sb–SnO2/PbO2 anodes in different electrolytes, J. Electroanal. Chem., 2016, vol. 775, p. 43.
  28. Over, H., Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research, Chem. Rev., 2012, vol. 112, p. 3356.
  29. Feng, Y.J. and Li, X.Y., Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Water Res., 2003, vol. 37, p. 2399.
  30. Panizza, M., and Cerisola, G., Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine, Electrochim. Acta, 2003, vol. 48, p. 1515.
  31. Panizza, M. and Cerisola, G., Electrochemical degradation of methyl red using BDD and PbO2 anodes, Ind. Eng. Chem. Res., 2008, vol. 47, p. 6816.
  32. Hamza, M., Abdelhedi, R., Brillas, E., and Sirés, I., Comparative electrochemical degradation of the triphenylmethane dye methyl violet with boron-doped diamond and Pt anodes, J. Electroanal. Chem., 2009, vol. 627, p. 41.
  33. Khamis, E., Mahé, D., Dardoize, F., and Devilliers, D., Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy, J. Appl. Electrochem., 2010, vol. 40, p. 1829.
  34. Luo, H., Li, C., Sun, X., and Ding, B.B., Cathodic indirect oxidation of organic pollutant paired to anodic persulfate production, J. Electroanal. Chem., 2017, vol. 792, p. 110.
  35. Zhu, C., Zhu, F., Dionysiou, D.D., Zhou, D., Fang, G., and Gao, J., Contribution of alcohol radicals to contaminant degradation in quenching studies of persulfate activation process, Water Res., 2018, vol. 139, p. 66.
  36. Liang, C. and Su, H.-W., Identification of sulfate and hydroxyl radicals in thermally activated persulfate, Ind. Eng. Chem. Res., 2009, vol. 48, p. 5558.
  37. Chen, L., Lei, C., Li, Z., Yang, B., Zhang, X., and Lei, L., Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants, Chemosphere, 2018, vol. 210, p. 516.
  38. Bu, L., Zhou, S., Shi, Z., Deng, L., and Gao, N., Removal of 2-MIB and geosmin by electrogenerated persulfate: Performance, mechanism and pathways, Chemosphere, 2017, vol. 168, p. 1309.
  39. Buxton, G.V., Greenstock, C.L., Helman, W.P., and Ross, A.B., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous Solution, J. Phys. Chem. Ref. Data, 1988, vol.17, p.513.
  40. Song, H., Yan, L., Jiang, J., Ma, J., Zhang, Z., Zhang, J., Liu, P., and Yang, T., Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation?, Water Res., 2018, vol. 128, p. 393.
  41. Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., Electrode reactions of a methanol radical on mercury, Dokl. Akad. Nauk SSSR, 1984, vol. 278, p. 896.
  42. Benderskii, V.A., Krivenko, A.G., and Kurmaz, V.A., Electrode reactions of methanol and ethanol radicals at mercury, Sov. Electrochem., 1986, vol. 22, p. 603.
  43. Rotenberg, Z.A. and Rufman, N.M., Photocurrents in nitrous-oxide solutions containing aliphatic-alcohols, J. Electroanal. Chem., 1984, vol. 175, p. 153.