Estimation of Corrosion Rate of STARBOND–CoS Cobalt–Chromium Alloy in the NaCl Solution

L. A. Beketaeva L. A. Beketaeva , K. V. Rybalka K. V. Rybalka , A. D. Davydov A. D. Davydov
Russian Journal of Electrochemistry
Abstract / Full Text

The corrosion potential Ecorr of STARBOND–CoS alloy in the 0.5 M NaCl solution was measured for 100 h. The anodic and cathodic potentiodynamic curves were measured in the same solution after a preliminary exposure of the test specimen at the corrosion potential Ecorr for 2–100 h. The corrosion current densities icorr were determined using the method of Tafel extrapolation. It is shown that Ecorr shifts from +9 to +275 mV against a saturated silver–chloride reference electrode (sat. Ag/AgCl) and icorr decreases to 40 nA/cm2 in 100 h. These results are explained by the alloy self-passivation, which provides its high corrosion resistance. This enables one to use STARBOND–CoS alloy for fabricating implants.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    L. A. Beketaeva, K. V. Rybalka & A. D. Davydov

  1. Giacomelli, F.C., Giacomelli, C., and Spinelli, A., Behavior of a Co–Cr–Mo biomaterial in simulated body fluid solutions studied by electrochemical and surface analysis techniques, J. Braz. Chem. Soc., 2004, vol. 15, p. 541.
  2. Reclaru, L., Lüthy, H., Eshler, P.I., Blatter, A., and Susz, C., Corrosion behaviour of cobalt–chromium dental alloys doped with precious metals, Biomaterials, 2005, vol. 26, p. 4358.
  3. Manaranche, C. and Hornberger, H., Corrosion and biocompatibility of dental alloys, Eur. Cell. Mater., 2005, vol. 9, p. 35.
  4. Galo, R., Ribeiro, R.F., Rodrigues, R.C.S., Rocha, L.A., and Mattos, M.C., Effects of chemical composition on the corrosion of dental alloys, Braz. Dent. J., 2012, vol. 23, p. 141.
  5. Kuznetsov, V.V., Filatova, T.A., Telezhkina, A.V., and Kruglikov, S.S., Corrosion resistance of Co–Cr–W coatings obtained by electrodeposition, J. Solid State Electrochem., 2018, vol. 22, no. 7, p. 2267.
  6. Ameer, M.A., Khamis, E., and Al-Motlaq, M., Electrochemical behaviour of recasting Ni–Cr and Co–Cr non precious dental alloys, Corros. Sci., 2004, vol. 46, p. 2825.
  7. Sharma, M., Kumar, A.V.R., Singh, N., Adya, N., and Saluja, B., Electrochemical corrosion behavior of dental implant alloys in artificial saliva, J. Mater. Eng. Perform., 2008, vol. 17, p. 695.
  8. Sharma, M., Kumar, A.V.R., and Singh, N., Electrochemical corrosion behaviour of dental implant alloys in saline media, J. Mater. Sci. – Mater. Med., 2008, vol. 19, p. 2647.
  9. Taher, N.M. and Al Jabab, A.S., Galvanic corrosion behavior of implant superstructure dental alloys, Dent. Mater., 2003, vol. 19, p. 54.
  10. Renita, D., Rajendran, S., and Chattree, A., Influence of artificial saliva on the corrosion behavior of dental alloys: a review, Indian J. Adv. Chem. Sci., 2016, vol. 4, p. 478.
  11. Capelo, S., Proença, L., Fernandes, J.C.S., and Fonseca, I.T.E., Galvanic corrosion of two non noble dental alloys, Int. J. Electrochem. Sci., 2014, vol. 9, p. 593.
  12. Ameer, M.A., Khamis, E., and Al-Motlaq, M., Electrochemical behavior of non-precious dental alloys in bleaching agents, Electrochim. Acta, 2004, vol. 50, p. 141.
  13. Nascimento, M.L., Mueller, W.-D., Carvalho, A.C., and Tomάs, H., Electrochemical characterization of cobalt-based alloys using the mini-cell system, Dent. Mater., 2007, vol. 23, p. 369.
  14. Bălă, D.I., Doicin, C.V., Cotrut, C.M., Ulmeanu, M.E., Ghionea, I.G., and Tarbă, C.I., Sintering the beaks of the elevator manufactured by direct metal laser sintering (DMLS) process from Co–Cr alloy, Metalurgija, 2016, vol. 4, p. 663.
  15. Alifui-Segbaya, F., Foley, P., and Williams, R.J., The corrosive effects of artificial saliva on cast and rapid manufacture-produced cobalt chromium alloys, Rapid Prototyp. J., 2013, vol. 19, p. 95.
  16. Hsu, R.W.-W., Yang, C.-C., Huang, C.-A., and Chen, Y.-S., Electrochemical corrosion studies on Co-Cr–Mo implant alloy in biological solutions, Mater. Chem. Phys., 2005, vol. 93. p. 531.
  17. Tchana, D.V., Simescu-Lazar, F., Drevet, R., Aaboubi, O., Fauré, J., Retraint, D., and Benhayoune, H., Influence of the surface mechanical attrition treatment (SMAT) on the corrosion behavior of Co28Cr6Mo alloy in Ringer’s solution, J. Solid State Electrochem., 2018, vol. 22, p. 1091.
  18. Puskar, T., Jevremovic, D., Williams, R. J., Eggbeer, D., Vukelic, D., and Budak, I., A comparative analysis of the corrosive effect of artificial saliva of variable pH on DMLS and cast Co–Cr–Mo dental alloy, Materials, 2014, vol. 7, p. 6486.
  19. Metikoš-Huković, M., Pilić, Z., Babić, R., and Omanović, D., Influence on the corrosion stability of CoCrMo implant alloy in Hank’s solution, Acta Biomater., 2006, vol. 2, p. 693.
  20. Metikoš-Huković, M. and Babić, R., Passivation and corrosion behaviours of cobalt and cobalt–chromium–molybdenum alloy, Corros. Sci., 2007, vol. 49, p. 3570.
  21. Xin, X-Z., Chen, J., Xiang, N., Gong, Y., and Wei, B., Surface characteristics and corrosion properties of selective laser melted Co–Cr dental alloy after porcelain firing, Dent. Mater., 2014, vol. 30, p. 263.
  22. Milosev, I. and Strehblow, H.H., The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution, Electrochim. Acta, 2003, vol. 48, p. 2767.
  23. Kocijan, A., Milosev, I., and Pihlar, B., Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis, J. Mater. Sci. – Mater. Med., 2004, vol. 15, p. 643.
  24. Hodgson, A.W.E., Kurz, S., Virtanen, S., Fervel, V., Olsson, C.A., and Mischler, S., Passive and transpassive behaviour of Co–Cr–Mo in simulated biological solutions, Electrochim. Acta, 2004, vol. 49, p. 2167.
  25. Hanawa, T., Hiromoto, S., and Asami, K., Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS, Appl. Surf. Sci., 2001, vol. 183, p. 68.
  26. Li, Y., Wang, K., He, P., Huang, B.X., and Kovacs, P., Surface-enhanced Raman spectroelectrochemical studies of corrosion films on implant Co–Cr–Mo alloy in biosimulating solutions, J. Raman. Spectrosc., 1999, vol. 30, p. 97.
  27. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Effect of self-passivation on the electrochemical and corrosion behavior of alloy C-22 in NaCl solutions, Corros. Sci., 2012, vol. 54, p. 161.
  28. Zhang, X.L., Jiang, Zh.H., Yao, Zh.P., Song, Y., and Wu, Zh.D., Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density, Corros. Sci., 2009, vol. 51, p. 581.
  29. Priyantha, N., Jayaweera, P., Macdonald, D.D., and Sun, A., An electrochemical impedance study of Alloy 22 in NaCl brine at elevated temperature. I. Corrosion behavior, J. Electroanal. Chem., 2004, vol. 572, p. 409.
  30. Caceres, L., Vargas, T., and Herrera, L., Determination of electrochemical parameters and corrosion rate for carbon steel in un-buffered sodium chloride solutions using a superposition model, Corros. Sci., 2007, vol. 49, p. 3168.
  31. Sfaira, M., Srhiri, A., Takenouti, H., Ficquelmont Loizos, M., Ben Bachir, A., and Khalakhil, M., Corrosion of mild steel in low conductive media simulating natural waters, J. Appl. Electrochem., 2001, vol. 31, p. 537.
  32. Rybalka, K.V., Beketaeva, L.A., and Davydov, A.D., Cathodic component of corrosion process: polarization curve with two Tafel portions, Russ. J. Electrochem., 2018, vol. 54, p. 456.
  33. Stansbury, E.E. and Buchanan, R.A., Fundamentals of the Electrochemical Corrosion, Materials Park, Ohio: ASM International, 2000, chapter 6.
  34. McCafferty, E., Introduction to Corrosion Science, New York: Springer, 2010, chapter 7.
  35. Mansfeld, F., in Advances in Corrosion Science and Technology, Fontana, G. and Staehle, R.W., Eds., New York: Plenum, 1976, vol. 6, chapter 2.