Electric Conductivity of Glasses in the MgO–V2O5–P2O5 System

A. A. Raskovalov A. A. Raskovalov , N. S. Saetova N. S. Saetova , M. I. Vlasov M. I. Vlasov , B. D. Antonov B. D. Antonov
Russian Journal of Electrochemistry
Abstract / Full Text

Amorphous glasses of the composition xMgO–yP2O5– (100 – x – y)V2O5 with x = 1–5 and y = 5, 10, and 15 mol % are obtained by the melt quenching technique. The amorphous state of samples is confirmed by XRD analysis. The density of glasses is determined by pycnometry. The introduction of 1 mol % magnesium oxide into the glass composition sharply decreases its density, the further increase in the magnesia concentration is accompanied by the graduate increase in density. The conductivity of glasses is measured by two methods: on direct current and by impedance spectroscopy. Comparing these results makes it possible to infer the electronic nature of conduction. The temperature dependence of glass conductivity is linear in the Arrhenius coordinates. For the compositions with y = 10 and 15, the dependence of conductivity on the magnesia content (x) passes through maximum x = 1 mol %. The glass model is build by the self-assembly procedure with the use of the non-constant force field molecular dynamics method. The analysis of configurations reveals that the concentration of 4-cooordinated environment of vanadium passes through a small maximum when 1 mol % MgO is present in the section xMgO–10P2O5–(90 – x)V2O5, which can be considered as an explanation of the conductivity maximum.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

    A. A. Raskovalov, M. I. Vlasov & B. D. Antonov

  • Vyatka State University, Kirov, Russia

    N. S. Saetova

  1. Sokolov, I.A., Tarlakov, Y.P., Ustinov N.Y., and Pronkin, A.A., Structure and electric properties of lithium phosphate glasses, Russ. J. Appl. Chem., 2005, vol. 78, p. 741.
  2. Money, B.K. and Hariharan, K., Lithium ion conduction in lithium metaphosphate based systems, Appl. Phys. A: Mater. Sci. Process., 2007, vol. 88, p. 647.
  3. Pakhomov, G.B. and Neverov, S.L., Glasses and supercooled melts in the Li2O–P2O5 system, Solid State Ionics, 1999, vol. 119, p. 235.
  4. Moustafa, Y.M., El-Egili, K., Doweidar, H., and Abbas, I., Structure and electric conduction of Fe2O3–P2O5 glasses, Phys. B (Amsterdam, Neth.), 2004, vol. 353, p. 82.
  5. Šantić, A., Moguš-Milanković, A., Furić, K., Bermanec, V., Kim, C.W., and Day, D.E., Structural properties of Cr2O3–Fe2O3–P2O5 glasses, Part I, J. Non-Cryst. Solids, 2007, vol. 353, p. 1070.
  6. Saiko, I.A., Saetova, N.S., Raskovalov, A.A., Il’ina, E.A., Molchanova, N.G., and Kadyrova, N.I., Hopping conductivity in V2O5-P2O5 glasses: experiment and non-constant force field molecular dynamics, Solid State Ionics, 2020, vol. 345, Art. No. 115180.
  7. Pietrzak, T.K., Pawliszak, Ł., Michalski, P.P., Wasiucionek, M., and Garbarczyk, J.E., Highly conductive 90V2O5·10P2O5 nanocrystalline cathode materials for lithium-ion batteries, Procedia Eng., 2013, vol. 251, p. 78.
  8. Garbarczyk, J.E., Jozwiak, P., Wasiucionek, M., and Nowinski, J.L., Enhancement of electrical conductivity in lithium vanadate glasses by nanocrystallization, Solid State Ionics, 2004, vol. 175, p. 691.
  9. Garbarczyk, J.E., Jozwiak, P., Wasiucionek, M., and Nowinski, J.L., Effect of nanocrystallization on the electronic conductivity of vanadate–phosphate glasses, Solid State Ionics, 2006, vol. 177, p. 2585.
  10. Garbarczyk, J.E., Jozwiak, P., Wasiucionek, M., and Nowinski, J.L., Nanocrystallization as a method of improvement of electrical properties and thermal stability of V2O5-rich glasses, J. Power Sources, 2007, vol. 173, p. 743.
  11. Pietrzak, T.K., Wasiucionek, M., Nowinski, J.L., and Garbarczyk, J.E., Isothermal nanocrystallization of vanadate–phosphate glasses, Solid State Ionics, 2013, vol. 251, p. 78.
  12. Khattak, G.D., Mekki, A., and Siddiqui, M.N., Compositional dependence of DC electrical conductivity of SrO-vanadate glasses, Solid State Ionics, 2012, vol. 211, p. 5.
  13. Al-Hajry, A., Al-Shahrani, A., and El-Desoky, M.M., Structural and other physical properties of barium vanadate glasses, Mater. Chem. Phys, 2006, vol. 95, p. 300.
  14. Tashtoush, N., Qudah, A.M., and El-Desoky, M.M., Compositional dependence of the electrical conductivity of calcium vanadate glassy semiconductors, J. Phys. Chem. Solids, 2007, vol. 68, p. 1926.
  15. Oh, S., Kang, M., Chung, S., Kim, H., Moon, H., and Oh, H., Electrical properties in semiconducting SrO–V2O5 and BaO–V2O5 glasses, J. Korean Phys. Soc., 1997, vol. 31, p. 664.
  16. Sen, S. and Ghosh, A., Polaronic transport properties of some vanadate glasses: Effect of alkali-earth oxide modifiers, Phys. Rev. B., 1999, vol. 60, p. 15143.
  17. Ghosh, A., Sural, M., and Sen, S.J., Phys. B (Amsterdam, Neth.), 1998, vol. 10, p. 7567.
  18. Khan, S. and Singh, K., Effect of MgO on structural, thermal and conducting properties of V2 – xMgxO5 – δ (x = 0.05–0.30) systems, Cer. Int., 2019, vol. 45, p. 695.
  19. Sharma, B.I. and Srinivasan, A., Electrical properties of V2O5–CaO–P2O5 glasses exhibiting majority charge carrier reversal, J. Mater. Sci., 2005, vol. 40, p. 5125.
  20. El-Desoky, M.M., DC conductivity and hopping mechanism in V2O5–B2O3–BaO glasses, Phys. Status Solidi A, 2003, vol. 195, p. 422.
  21. Raskovalov, A.A., Non-constant force field molecular dynamics, in An Introduction to Molecular Dynamics, Kemp, M.S., Ed., New York: Nova Science, 2019, p. 143.
  22. Saetova, N.S., Raskovalov, A.A., Il’ina, E.A., Antonov, B.D., and Grzhegorzhevskiy, K.V., Structure and conductivity of 30Na2O–xV2O5–(70 – x)B2O3 glasses: experiment and molecular dynamics with elements of self-assembly, Russ. J. Inorg. Chem., 2021, vol. 66, p. 313.
  23. Raskovalov, A.A. and azTotMD: Software for non-constant force field molecular dynamics, SoftwareX, 2019, vol. 10, no. 100233.
  24. Pedone, A., Malavasi, G., and Menziani, M.C., Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses, J. Phys. Chem. C, 2009, vol. 113, p. 15723.
  25. Omrani, R.O., Kaoutar, A., Jazouli, A.El, Krimi, S., Khattech, I., Jemal, M., Videau, J.-J., and Couzi, M., Structural and thermochemical properties of sodium magnesium phosphate glasses, J. Alloys Compd., 2015, vol. 632, p. 766.
  26. Khor, S.F., Talib, Z.A., Daud, W.M., Sidek, H.A.A., and Ng, B.H., Effects of MgO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses, J. Non-Cryst. Solids, 2009, vol. 355, p. 2533.
  27. Sen, S. and Ghosh, A., Structure and other physical properties of magnesium vanadate glasses, J. Non-Cryst. Solids, 1999, vol. 258, p. 29.
  28. Attos, O., Massot, M., Balkanski, M., Haro-Poniatowski, E., and Asomoza, M., Structure of borovandate glasses studied by Raman spectroscopy, J. Non-Cryst. Solids, 1997, vol. 210, p. 163.
  29. Yadav, A.K. and Singh, P., A Review on structure of glasses by Raman spectroscopy, RSC Adv., 2015, vol. 83, p. 67583.
  30. Bhargava, R.N. and Condrate, R.A., The vibrational spectra of VPO5 crystal phases and related glasses, Appl. Spectroscopy, 1977, vol. 31, p. 230.
  31. Magdas, D.A., Vedeanu, N.S., and Toloman, D., Study on the effect of vanadium oxide in calcium phosphate glasses by Raman, IR and UV–vis spectroscopy, J. Non-Cryst. Solids, 2015, vol. 428, p. 151.
  32. Hejda, P., Holubová, J., Černošek, Z., and Černošková, E., The structure and properties of vanadium zinc phosphate glasses, J. Non-Cryst. Solids, 2017, vol. 462, p. 65.
  33. Chrissanthopoulos, A., Pouchan, C., and Papatheodorou, G.N., Structural investigation of vanadium-sodium metaphosphate glasses, Z. Naturforsch., 2001, vol. 56a, p. 773.
  34. Kerkouri, N., Haddad, M., Et-tabirou, M., Chahine, A., and Laanab, L., FTIR, Raman, EPR and optical absorption spectral studies on V2O5-doped cadmium phosphate glasses, Physica B, 2011, vol. 406, p. 3142.
  35. Lewandowska, R., Krasowski, K., Bacewicz, R., and Garbarczyk, J.E., Studies of silver-vanadate superionic glasses using Raman spectroscopy, Solid State Ionics, 1999, vol. 119, p. 229.
  36. Laorodphan, N., Pooddee, P., Kidkhunthod, P., Kunthadee, P., Tapala, W., and Puntharod, R., Boron and pentavalent vanadium local environments in binary vanadium borate glasses, J. Non-Cryst. Solids, 2016, vol. 453, p. 118.
  37. Lee, S.-H., Cheong, H.M., Seong, M.J., Liua, P., Tracy, C.E., Mascarenhas, A., Pitts, J.R., and Deb, S.K., Raman spectroscopic studies of amorphous vanadium oxide thin films, Solid State Ionics, 2003, vol. 165, p. 111.
  38. Saetova, N.S., Raskovalov, A.A., Antonov, B.D., Yaroslavtseva, T.V., Reznitskikh, O.G., Zabolotskaya, E.V., Kadyrova, N.I., and Telyatnikova, A.A., Conductivity and spectroscopic studies of Li2O–V2O5–B2O3 glasses, Ionics, 2018, vol. 24, p. 1929.