Formation and Physicochemical Properties of Composite Electrochemical Coatings of Tin–Nickel Alloy with Silicon Dioxide Incapsulated by Nanosized Titanium Dioxide

A. V. Pyanko A. V. Pyanko , O. A. Alisienok O. A. Alisienok , P. B. Kubrak P. B. Kubrak , A. A. Chernik A. A. Chernik
Russian Journal of Electrochemistry
Abstract / Full Text

The “SiO2 core–TiO2 shell” composite particles are synthesized and their properties are studied. Using the method of X-ray diffraction analysis, it is found that titanium dioxide in the composite is in the anatase crystal modification with crystallites 6–8 nm in size. The core–shell composites with a titanium dioxide content of 32 wt % have a specific surface area of 220 m2/g and a sorption volume of about 0.3 cm3/g. The effect of SiO2 core–TiO2 shell composite introduced into the electrolyte on the cathodic polarization of the electrochemical deposition of Sn–Ni alloy in the fluoride–chloride electrolyte is determined using the method of voltammetry. The morphology (SEM) and phase composition (XRD) of electrochemical coatings, which were deposited from the electrolytes with various concentrations of the composite, are studied. It is shown that the introduced SiO2 core–TiO2 shell composite has an effect on the activation energy of electrodeposition of the coatings based on the tin–nickel alloy. The concentration of SiO2 core–TiO2 shell composite in the electrolyte should be 2 g/dm3. The titanium content in the coating is 0.19 wt %. The dependence of microroughness and hardness of the coatings on the concentration of the composite in the electrolyte is studied.

Author information
  • Belarusian State Technological University, Minsk, Belarus

    A. V. Pyanko, O. A. Alisienok, P. B. Kubrak & A. A. Chernik

  1. Murashkevich, A.N., Alisienok, O.A., and Zharskii, I.M., Physicochemical and photocatalytic properties of nanosized titanium dioxide deposited on silicon dioxide microspheres, Kinet. Catal., 2011, vol. 52, p. 809.
  2. Fatimah, I., Prakoso, N.I., Sahroni, I., Musawwa, M.M., Sim, Y.L., Kooli, F., and Muraza, O., Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves, Heliyon, 2019, vol. 5, no. 11, p. e02766.
  3. Titanium Dioxide (TiO 2 ) and Its Applications, Parrino, Fr. and Palmisano, L., Eds., Elsevier Metal Oxides Series, Korotcenkov, G., Ed., Cambridge: Elsevier, 2021.
  4. Zhonghou, Xu, Chuanyong, J., Fasheng, Li, and Xiaoguang, M., Mechanisms of photocatalytical degradation of monomethylarsonic and dimethylarsinic acids using nanocrystalline titanium dioxide, Environ. Sci. Technol., 2008, vol. 42, no. 7, p. 2349.
  5. Narewadikar, N.A., Suryavanshi, R.D., and Rajpure, K.Y., Enhanced photoelectrocatalytic degradation activity of titanium dioxide photoelectrode: effect of film thickness, Colloid J., 2021, vol. 83, p. 107.
  6. Natarajan, K., Singh, P., Bajaj, H.C., and Tayade, R.J., Facile synthesis of TiO2/ZnFe2O4 nanocomposite by sol-gel auto combustion method for superior visible light photocatalytic efficiency, Korean J. Chem. Eng., 2016, vol. 33, no. 6, p. 1788.
  7. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C., Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev., 2014, vol. 114, no. 19, p. 9987.
  8. Wilhelm, P., Stephan, D., and Zetzsch, C., Titania coated silica nano-spheres as catalyst in the photodegradation of hydrocarbons, Prog. Colloid Polym. Sci., 2006, p. 147.
  9. Kalele, S., Dey, R., Hebalkar, N., Urban, J., Gosavi, S.W., and Kulkarni, S.K., Synthesis and characterization of silica–titania core–shell particles, Pramana, 2005, vol. 65, no. 5, p. 787.
  10. Murashkevich, A.N., Lavitskaya, A.S., Alisienok, O.A., and Zharskii, I.M., Fabrication and properties of SiO2/TiO2 composites, Inorg. Mater., 2009, vol. 45, p. 1146.
  11. Pyanko, A.V., Makarova, I.V., Kharitonov, D.S., Makeeva, I.S., Sergievich, D.S., and Chernik, A.A., Physicochemical and biocidal properties of nickel–tin and nickel–tin–titania coatings, Prot. Met. Phys. Chem. Surf., 2021, vol. 57, p. 88.
  12. Benea, L. and Celis, J.P., Effect of nano-TiC dispersed particles and electro-codeposition parameters on morphology and structure of hybrid Ni/TiC nanocomposite layers, Materials (Basel), 2016, vol. 6, no. 9, p. 269.
  13. Mozhgan, S., Mahdi, M., and Seyed, M.E., Superhydrophobic and corrosion resistant properties of electrodeposited Ni–TiO2/TMPSi nanocomposite coating, Colloids Surf., A, 2019, vol. 573, p. 196.
  14. Antikhovich, I.V., Chernik, A.A., and Zharskii, I.M., Electrochemical deposition of nickel from acetate–chloride electrolyte in the presence of ammonium acetate, Vestnik BSU, 2014, no. 1(2), p. 15.
  15. Balakai, V.I., Arzumanova, A.V., Murzenko, K.V., Byrylov, I.F., and Kukoz, V.F., Characteristics of nickel coatings deposited from chloride bath, Electroplating and Surface Treatment, 2009, vol. 17, no. 4, p. 32.
  16. Mozhgan, S., Mahdi, M., Seyed, M.E., and Mohammad, A., The role of TiO2 nanoparticles on the topography and hydrophobicity of electrodeposited Ni–TiO2 composite coating, Surf. Topogr.: Metrol. Prop., 2020, vol. 8, no. 2, p. 025008.
  17. Rogozhin, V.V., Spasskaya, M.M., Anan’eva, E.Yu., Yarovaya, E.I., and Abramov, A.M., Use of boron-containing substances for fabricating functional nickel–boron coatings for various purposes, Vestnik NNGU, 2012, no. 4(1), p. 140.
  18. Ehrlich, A., Kucenic, M., and Belsito, D.V., Role of body piercing in the induction of metal allergies, Am. J. Contact Dermat., 2001, vol. 12, no. 3, p. 151.
  19. Beck, U., Reiners, G., Urban, I., Jehn, H.A., Kopacz, U., and Schack, H., Decorative hard coatings: new layer systems without allergy risk, Surf. Coat. Technol., 1993, vol. 61, p. 215.
  20. Cronin, E., Contact Dermatitis, Churchill-Livingstone: London, 1980.
  21. Kositsyn, S.V., Alloys and Coatings Based on Nickel Monoaluminide, Yekaterinburg: Ural Branch of Russian Academy of Sciences, 2008.
  22. Biryukova, N.M., Lipai, M.S., and Sokolov, V.G., Investigation of nickel-based alloys used in electronic instrumentation, Proc. 1st Int. Scientific Conf. “Technical Sciences: Problems and Prospects,” Saint Petersburg: Renome, 2011, p. 89.
  23. Jeong, S.E., Jung, S.B., and Yoon, J.W., Fast formation of Ni–Sn intermetallic joints using Ni–Sn paste for high-temperature bonding applications. J. Mater. Sci.: Mater. Electron., 2020, vol. 31, p. 15048.
  24. Roshchin, V.M., Petukhov, I.N., Gak, A.S., Mikhailova, M.S., and Fedorov, V.A., Thermal cycling study of electrodeposited Sn–Ni and In–Ni Alloys, Inorg. Mater., 2020, vol. 56, no. 3, p. 254.
  25. Pyanko, A.V., Makarova, I.V., Kharitonov, D.S., Alisienok, O.A., Chernik, A.A., and Makeeva, I.S., Tin–nickel–titania composite coatings, Inorg. Mater., 2019, vol. 55, no. 6, p. 568.
  26. Kuznetsov, B.V., Vorobyova, T.N., and Glibin, V.P., A comparative study of tin–nickel alloys obtained by electroplating and casting, Metal Finish., 2013, vol. 111, p. 38.
  27. Murashkevich, A.N., Lavitskaya, A.S., Alisienok, O.A., and Zharskii, I.M., Fabrication and properties of SiO2/TiO2 composites, Inorg. Mater., 2009, vol. 45, p. 1146.
  28. Murashkevich, A.N., Alisienok, O.A., and Zharsky, I.M., Fabrication and study of titanium dioxide hydrosols, Sviridov Readings, 2009, no. 5, p. 161.
  29. Rosolymou, E., Spanou, S., Zanella, C., Tsoukleris, D.S., Köhler, S., Leisner, P., and Pavlatou, E.A., Electrodeposition of photocatalytic Sn–Ni matrix composite coatings embedded with doped TiO2 particles, Coatings, 2020, vol. 10, p. 775.