Naphthalene Diimides and Vanadium Pentoxide Composite Electrodes for Lithium Ion Batteries

 F. de A. Silva F. de A. Silva , G. Lima G. Lima , G. J.-F. Demets G. J.-F. Demets
Russian Journal of Electrochemistry
Abstract / Full Text

N,N′-bis(4-pyridyl)-1,4,5,8-naphthalene diimide (NDI-py) and N,N′-bis(4-benzidine)-1,4,5,8-naphthalene diimide (NDI-bz) were intercalated into lamellar vanadium pentoxide (V2O5·nH2O) xerogels (VXG) in different quantities. Li+ electro-insertion-associated specific charge capacity was considerably improved for the composite electrodes towards pure VXG (125 mA h g–1 for NDI-py3 and 141 mA h g–1 for NDI-bz3 composites vs. 98 mA h g–1 for pure VXG, at 0.1 mA cm–2), even when bearing low imide amounts. Composites charge/discharge cyclability is also enhanced due to the presence of the imides, especially in the case of VXG/NDI-bz composite. Electrochemical impedance spectroscopy results proved that charge transfer at electrolyte/host matrix interface is the limiting step of the lithium ion electro-insertion. The present results are in agreement with the results obtained with N,N′-bis(4-aminophenyl)-1,4,5,8-naphthalene diimide (NDI-ph), and allow a systematic structure/property analysis of V2O5·nH2O/1,4,5,8-naphthalene diimides as cathode materials for Li+ batteries.

Author information
  • Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, 14.169-263, Sertãozinho/SP, Brasil

    F. de A. Silva

  • Escola Agrícola de Jundiaí—Universidade Federal do Rio Grande do Norte, 59280-000, Macaíba/RN, Brasil

    G. Lima

  • Departamento de Química—Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14.040-900, Ribeirão Preto/SP, Brasil

    G. J.-F. Demets

  1. Yao, J., Li, Y., Massé, R.C., Uchaker, E., and Cao, G., Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond, Energy Storage Mater., 2018, vol. 11, p. 205.
  2. Julien, C., Mauger, A., Zaghib, K., and Groult, H., Comparative issues of cathode materials for Li-ion batteries, Inorganics, 2014, vol. 2, p. 132.
  3. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Li-ion battery materials: present and future, Mater. Today, 2015, vol. 18, p. 252.
  4. Deng, D., Li-ion batteries: basics, progress, and challenges, Energy Sci. Eng., 2015, vol. 3, p. 385.
  5. Zhou, H., Xin, F., Pei, B., and Whittingham, M.S., What limits the capacity of layered oxide cathodes in lithium batteries?, ACS Energy Lett., 2019, vol. 4, p. 1902.
  6. Hu, B., Li, L., Xiong, X., Liu, L., Huang, C., Yu, D., and Chen, C., High-performance of copper-doped vanadium pentoxide porous thin films cathode for lithium-ion batteries, J. Solid State Electrochem., 2019, vol. 23, p. 1315.
  7. Anaissi, F.J., Demets, G.J.F., and Toma, H.E., Electrochemical conditioning of vanadium(V) pentoxide xerogel films, Electrochem. Commun., 1999, vol. 1, p. 332.
  8. Liu, Q., Li, Z.F., Liu, Y., Zhang, H., Ren, Y., Sun, C.J., Lu, W., Zhou, Y., Stanciu, L., Stach, E.A., and Xie, J., Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries, Nat. Commun., 2015, vol. 6, p. 1.
  9. McNulty, D., Buckley, D.N., and O’Dwyer, C., Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes, J. Power Sources, 2014, vol. 267, p. 831.
  10. Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M., From biomass to a renewable {LiXC}6O6 organic electrode for sustainable Li-ion batteries, ChemSusChem., 2008, vol. 1, p. 348.
  11. Miroshnikov, M., Divya, K.P., Babu, G., Meiyazhagan, A., Arava, L.M.R., Ajayan, P.M., and John, G., Power from nature: designing green battery materials from electroactive quinone derivatives and organic polymers, J. Mater. Chem. A, 2016, vol. 4, p. 12370.
  12. Häupler, B., Wild, A., and Schubert, U.S., Carbonyls: powerful organic materials for secondary batteries, Adv. Energy Mater., 2015, vol. 5, no. 11.
  13. Kobaisi, M.Al., Bhosale, S.V., Latham, K., Raynor, A.M., and Bhosale, S.V., Functional naphthalene diimides: synthesis, properties, and applications, Chem. Rev., 2016, vol. 116, p. 11685.
  14. Bhosale, S.V., Jani, C.H., and Langford, S.J., Chemistry of naphthalene diimides, Chem. Soc. Rev., 2008, vol. 37, p. 331.
  15. Moraes, T.B.F., Schimidt, M.F.R.A., Bacani, R., Weber, G., Politi, M.J., Castanheira, B., Brochsztain, S., de Silva, F.A., Demets, G.J.F., and Triboni, E.R., Polysilsesquioxane naphthalenediimide thermo and photochromic gels, J. Lumin., 2018, vol. 204, p. 685.
  16. Song, Z., Zhan, H., and Zhou, Y., Polyimides: promising energy-storage materials, Angew. Chem. – Int. Ed., 2010, vol. 49, p. 8444.
  17. Rosciano, F., Salamone, M.M., Ruffo, R., Sassi, M., and Beverina, L., Crosslinked electroactive polymers containing naphthalene-bisimide redox centers for energy storage, J. Electrochem. Soc., 2013, vol. 160, p. A1094.
  18. Xu, F., Xia, J., Shi, W., and Cao, S.A., Sulfonyl-based polyimide cathode for lithium and sodium secondary batteries: enhancing the cycling performance by the electrolyte, Mater. Chem. Phys., 2016, vol. 169, p. 192.
  19. Song, Z., Xu, T., Gordin, M.L., Jiang, Y.B., Bae, I.T., Xiao, Q., Zhan, H., Liu, J., and Wang, D., Polymer-graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries, Nano Lett., 2012, vol. 12, p. 2205.
  20. Chen, M., Yang, C., Xu, Z., Tang, Y., Jiang, J., Liu, P., Su, Y., and Wu, D., A facile self-assembly strategy towards naphthalene diimide/graphene hybrids as high performance organic cathodes for lithium-ion batteries, RSC Adv., 2016, vol. 6, p. 13666.
  21. De Araújo Silva, F., Cicolani, R.S., Lima, G., Huguenin, F., and Jean-François Demets, G., Enhanced Li+ charge storage in naphthalene diimide/vanadium pentoxide intercalates, RSC Adv., 2018, vol. 8, p. 24029.
  22. de Silva, F.A., Huguenin, F., De Lima, S.M., and Demets, G.J.F., Lithium ion electrochemical insertion in vanadium pentoxide/cucurbit[6]uril intercalates, Inorg. Chem. Front., 2014, vol. 1, p. 495.
  23. DeBlase, C.R., Hernández-Burgos, K., Rotter, J.M., Fortman, D.J., dos Abreu, S.D., Timm, R.A., Diógenes, I.C.N., Kubota, L.T., Abruña, H.D., and Dichtel, W.R., Cation-dependent stabilization of electrogenerated naphthalene diimide dianions in porous polymer thin films and their application to electrical energy storage, Angew. Chem., 2015, vol. 127, p. 13423.
  24. Guha, S. and Saha, S., Fluoride ion sensing by an anion-π interaction, J. Am. Chem. Soc., 2010, vol. 132, p. 17674.
  25. Guha, S., Goodson, F.S., Corson, L.J., and Saha, S., Boundaries of anion/naphthalenediimide interactions: from anion-π interactions to anion-induced charge-transfer and electron-transfer phenomena, J. Am. Chem. Soc., 2012, vol. 134, p. 13679.
  26. Castaldelli, E., Imalka Jayawardena, K.D.G., Cox, D.C., Clarkson, G.J., Walton, R.I., Le-Quang, L., Chauvin, J., Silva, S.R.P., and Demets, G.J.F., Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework, Nat. Commun., 2017, vol. 8, no. 1.
  27. Livage, J., Henry, M., and Sanchez, C., Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem., 1988, vol. 18, p. 259.
  28. Galiote, N.A., Camargo, M.N.L., Iost, R.M., Crespilho, F., and Huguenin, F., Effects of self-assembled materials prepared from V2O5 for lithium ion electroinsertion, Langmuir, 2011, vol. 27, p. 12209.
  29. Almuaibed, A.M. and Townshend, A., Individual and sequential flow injection spectrophotometric determination of vanadium(V) and titanium(IV), Fresenius’ Z. Anal. Chem., 1989, vol. 335, p. 905.
  30. Kundu, S., Satpati, B., Mukherjee, M., Kar, T., and Pradhan, S.K., Hydrothermal synthesis of polyaniline intercalated vanadium oxide xerogel hybrid nanocomposites: effective control of morphology and structural characterization, New J. Chem., 2017, vol. 41, p. 3634.
  31. Perera, S.D., Archer, R.B., Damin, C.A., Mendoza-Cruz, R., and Rhodes, C.P., Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage, J. Power Sources, 2017, vol. 343, p. 580.
  32. More, S., Khupse, N., Bhosale, M., Ambekar, J., Kulkarni, M., and Kale, B., Hierarchical nanostructured benzoic naphthalene tetracarboxylic di-imide organic cathode for lithium ion battery, Chem. Select., 2020, vol. 5, p. 2157.
  33. Lakraychi, A.E., Fahsi, K., Aymard, L., Poizot, P., Dolhem, F., and Bonnet, J.P., Carboxylic and sulfonic N-substituted naphthalene diimide salts as highly stable non-polymeric organic electrodes for lithium batteries, Electrochem. Commun., 2017, vol. 76, p. 47.
  34. Tian, B., Ning, G.-H., Gao, Q., Tan, L.-M., Tang, W., Chen, Z., Su, C., and Loh, K.P., Crystal engineering of naphthalenediimide-based metal{\textendash}organic frameworks: structure-dependent lithium storage, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 310676.
  35. Lv, M., Zhang, F., Wu, Y., Chen, M., Yao, C., Nan, J., Shu, D., Zeng, R., Zeng, H., and Chou, S.-L., Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for rechargeable lithium batteries, Sci. Rep., 2016, vol. 6, no. 1, p. 23515.
  36. Ivanishchev, A.V., Gridina, N.A., Rybakov, K.S., Ivanishcheva, I.A., and Dixit, A., Structural and electrochemical investigation of lithium ions insertion processes in polyanionic compounds of lithium and transition metals, J. Electroanal. Chem., 2020, vol. 860, p. 113894.
  37. Ivanishchev, A.V. and Ivanishcheva, I.A., Ion transport in lithium electrochemical systems: problems and solutions, Russ. J. Electrochem., 2020, vol. 56, p. 1002.
  38. Ho, C., Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films, J. Electrochem. Soc., 1980, vol. 127, p. 343.
  39. Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy, Hoboken, NJ: John Wiley & Sons, 2008.
  40. Bruce, P., Solid State Electrochemistry, Cambridge Univ. Press, 1995.